【題目】如圖所示,在同一水平面從左到右依次是大廈、別墅、小山、小彬?yàn)榱藴y得小山的高度,在大廈的樓頂B處測得山頂C的俯角∠GBC=13°,在別墅的大門A點(diǎn)處測得大廈的樓頂B點(diǎn)的仰角∠BAO=35°,山坡AC的坡度i=1:2,OA=500米,則山C的垂直高度約為( )(參考數(shù)據(jù):sin13°≈0.22,tan13°≈0.23,sin35°≈0.57)
A. 161.0 B. 116.4 C. 106.8 D. 76.2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺進(jìn)貨價為2500元.市場調(diào)研表明:當(dāng)銷售價為2900元時,平均每天能售出8臺;而當(dāng)銷售價每降低50元時,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,設(shè)每臺冰箱的定價為x元,則x滿足的關(guān)系式為( )
A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000
C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F.
(1)證明:△ADE≌△CBF;
(2)連接AF、CE,四邊形AECF是菱形嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(1)班課外活動小組利用標(biāo)桿測量學(xué)校旗桿的高度,已知標(biāo)桿高度CD=3m,標(biāo)桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標(biāo)桿CD的水平距離DF=2m,求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青島交運(yùn)集團(tuán)出租車司機(jī)張師傅某天下午的營運(yùn)全是在東西走向的吉林路上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍?/span>單位:千米如下:,,,,,,,,,,
(1)張師傅這天最后到達(dá)目的地時,在下午出車時的出發(fā)地哪個方向?距離出發(fā)地多遠(yuǎn)?
(2)張師傅這天下午共行車多少千米?
(3)若每千米耗油,則這天下午張師傅用了多少升油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù),有下列說法:
①如果當(dāng)x≤1時隨的增大而減小,則m≥1;
②如果它的圖象與x軸的兩交點(diǎn)的距離是4,則;
③如果將它的圖象向左平移3個單位后的函數(shù)的最小值是-4,則m=-1;
④如果當(dāng)x=1時的函數(shù)值與x=2013時的函數(shù)值相等,則當(dāng)x=2014時的函數(shù)值為-3.
其中正確的說法是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個一次函數(shù)的圖像與軸交于同一點(diǎn),則稱這兩個函數(shù)為一對“牽手函數(shù)”,這個交點(diǎn)為“牽手點(diǎn)”.
(1)一次函數(shù)與軸的交點(diǎn)坐標(biāo)為________;一次函數(shù)與一次函數(shù)為一對“牽手函數(shù)”,則________;
(2)請寫出以為“牽手點(diǎn)”的一對“牽手函數(shù)”;
(3)已知一對“牽手函數(shù)”:與,其中,為一元二次方程的兩根,求它們的“牽手點(diǎn)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建國七十周年,南崗區(qū)準(zhǔn)備對某道路工程進(jìn)行改造,若請甲工程隊(duì)單獨(dú)做此工程需4個月完成,若請乙工程隊(duì)單獨(dú)做此工程需6個月完成,若甲、乙兩隊(duì)合作2個月后,甲工程隊(duì)到期撤離,則乙工程隊(duì)再單獨(dú)需幾個月能完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個動點(diǎn),當(dāng)△PAC的周長最小時,求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com