【題目】某水果基地計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.

每輛汽車能裝的數(shù)量(噸)

4

2

3

每噸水果可獲利潤(千元)

5

7

4

(1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?

(2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結果用m表示)

(3)在(2)問的基礎上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?

【答案】(1)乙種水果的車有2輛、丙種水果的汽車有6;(2)乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛;(3)見解析.

【解析】

(1)根據(jù)“8輛汽車裝運乙、丙兩種水果共22噸到A地銷售列出方程組,即可解

答;

(2)設裝運乙、丙水果的車分別為a輛,b輛,列出方程組即可解答;

(3)設總利潤為w千元,表示出w=10m+216.列出不等式組確定m的取值范圍13≤m≤15.5,結合一次函數(shù)的性質,即可解答.

解:(1)設裝運乙、丙水果的車分別為x輛,y輛,得:

解得:

答:裝運乙種水果的車有2輛、丙種水果的汽車有6輛.

2)設裝運乙、丙水果的車分別為a輛,b輛,得:

,

解得

答:裝運乙種水果的汽車是(m12)輛,丙種水果的汽車是(322m)輛.

3)設總利潤為w千元,

w=5×4m+7×2m12+4×3322m=10m+216

13≤m≤15.5

m為正整數(shù),

m=1314,15,

w=10m+216中,wm的增大而增大,

∴當m=15時,W最大=366(千元),

答:當運甲水果的車15輛,運乙水果的車3輛,運丙水果的車2輛,利潤最大,最大利潤為366千元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).

(1)求該拋物線的解析式;

(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;

(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;

(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一根竹竿長米,先像靠墻放置,與水平夾角為,為了減少占地空間,現(xiàn)將竹竿像放置,與水平夾角為,則竹竿讓出多少水平空間(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形中,,,,點從點出發(fā)(不含點)的速度沿的方向運動到點停止,點出發(fā)后,點才開始從點出發(fā)以的速度沿的方向運動到點停止,當點到達點時,點恰好到達點

1)當點到達點時,的面積為,求的長;

2)在(1)的條件下,設點運動時間為,運動過程中的面積為,請用含的式子表示面積,并直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:

(1)2018年春節(jié)期間,該市A、B、C、D、E這五個景點共接待游客人數(shù)為多少?

(2)扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是  ,并補全條形統(tǒng)計圖.

(3)甲,乙兩個旅行團在A、B、D三個景點中隨機選擇一個,求這兩個旅行團選中同一景點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且

A(-1,0),B(4,0),∠ACB=90°.

(1)求過A、B、C三點的拋物線解析式;

(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;

(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.

圖1 備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將含30°角的直角三角尺ABC繞點B順時針旋轉150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為(  )

A. 4 B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊的邊長為,點分別是邊、上的動點,點分別從頂點、同時出發(fā),且它們的速度都為

1)如圖1,連接,求經(jīng)過多少秒后,是直角三角形;

2)如圖2,連接、交于點,在點、運動的過程中,的大小是否變化?若變化,請說明理由;若不變,請求出它的度數(shù).

3)如圖3,若點運動到終點后繼續(xù)在射線上運動,直線、交于點,則的大小是否變化?若變化,請說明理由;若不變,請求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______

查看答案和解析>>

同步練習冊答案