解答:解:作AC⊥x軸,由已知得OC=4,AC=3,OA=
=5.
(1)當(dāng)OA=OB=5時,
如果點B在x軸的負(fù)半軸上,如圖(1),點B的坐標(biāo)為(-5,0);
如果點B在x軸的正半軸上,如圖(2),點B的坐標(biāo)為(5,0);
當(dāng)OA=AB時,點B在x軸的負(fù)半軸上,如圖(3),BC=OC,則OB=8,點B的坐標(biāo)為(-8,0);
當(dāng)AB=OB時,點B在x軸的負(fù)半軸上,如圖(4),在x軸上取點D,使AD=OA,可知OD=8.
由∠AOB=∠OAB=∠ODA,可知△AOB∽△ODA,
則
=,
解得OB=
,
點B的坐標(biāo)為(-
,0).
(2)當(dāng)AB=OA時,拋物線過O(0,0),A(-4,3),B(-8,0)三點,
設(shè)拋物線的函數(shù)表達(dá)式為y=ax
2+bx,
可得方程組
,
解得a=
-,
b=-,
∴
y=-x2-x;
當(dāng)OA=OB時,同理得
y=-x2-x.
(3)當(dāng)OA=AB時,若BP∥OA,如圖(5),作PE⊥x軸,
則∠AOC=∠PBE,∠ACO=∠PEB=90°,
△AOC∽△PBE,
==.
設(shè)BE=4m,PE=3m,則點P的坐標(biāo)為(4m-8,-3m),
代入
y=-x2-x,
解得m=3;
則點P的坐標(biāo)為(4,-9),
S
梯形ABPO=S
△ABO+S
△BPO=48.
若OP∥AB,根據(jù)拋物線的對稱性可得點P的坐標(biāo)為(-12,-9),
S
梯形AOPB=S
△ABO+S
△BPO=48.
當(dāng)OA=OB時,若BP∥OA,如圖(6),作PF⊥x軸,
則∠AOC=∠PBF,∠ACO=∠PFB=90°,
△AOC∽△PBF,
==;
設(shè)BF=4m,PF=3m,則點P的坐標(biāo)為(4m-5,-3m),
代入
y=-x2-x,
解得m=
.則點P的坐標(biāo)為(1,-
),
S
梯形ABPO=S
△ABO+S
△BPO=
.
若OP∥AB(圖略),作PF⊥x軸,
則∠ABC=∠POF,∠ACB=∠PFO=90°,
△ABC∽△POF,
==3;
設(shè)點P的坐標(biāo)為(-n,-3n),
代入
y=-x2-x,
解得n=9.
則點P的坐標(biāo)為(-9,-27),S
梯形AOPB=S
△ABO+S
△BPO=75.