【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點(diǎn),AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
【答案】(1)見解析;(2)見解析.
【解析】
(1)易證∠ADB=∠AEC=90°,AB=AC,即可證明Rt△BDA≌Rt△CEA,即可解題;
(2)根據(jù)(1)中結(jié)論可得AE=CD,根據(jù)直角三角形斜邊的中線等于斜邊的一半的性質(zhì)可得AD=DE,即可解題.
證明:(1)∵△ABC是等邊三角形,
∴AB=BC=AC,
∵D是AC中點(diǎn),
∴∠CBD=∠ABD=30°,∠BDA=90°,
∵AE⊥EC,
∴∠AEC=90°,
在Rt△BDA和Rt△CEA中,
,
∴Rt△BDA≌Rt△CEA(HL);
(2)∵△BDA≌△CEA,
∴AE=AD,
∵D為邊AC的中點(diǎn),AE⊥EC,
∴AD=DE,
∴AD=DE=AE,
∴△ADE是等邊三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖的長為,寬為的小長方形紙片,按如圖的方式不重疊地放在矩形內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為,當(dāng)的長度變化時,則,滿足( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線l經(jīng)過點(diǎn)A,BD⊥直線l,CE⊥直線l,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線l上,且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立;請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是直線l上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,求證:DF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在槐蔭區(qū)初中數(shù)學(xué)文化年的開幕式上,同學(xué)們?yōu)槲覀冋故玖搜芯啃詫W(xué)習(xí)“怎樣制作一個盡可能大的無蓋長方體盒子”.現(xiàn)在有一個長是60cm,寬為40cm的長方形硬紙片做成一個無蓋的長方體盒子,于是在長方形的四個角各剪去一個相同的小正方形(如圖).
(1)若設(shè)這些小正方形的邊長為x cm,求圖中陰影部分的面積.
(2)當(dāng)x-5時,求這個盒子的體積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)60°得到△ADE,點(diǎn)C的對應(yīng)點(diǎn)E恰好落在BA的延長線上,DE與BC交于點(diǎn)F,連接BD.下列結(jié)論不一定正確的是( 。
A. AD=BD B. AC∥BD C. DF=EF D. ∠CBD=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動時(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com