【題目】計(jì)算:(﹣ )﹣2﹣|﹣ |+2sin60°+(π﹣4)0 .
【答案】解:原式=4﹣ + +1=5.
【解析】先根據(jù)負(fù)指數(shù)冪的性質(zhì)、絕對值的性質(zhì)、特殊角的三角函數(shù)值以及零指數(shù)冪的性質(zhì)化簡,然后再進(jìn)行實(shí)數(shù)運(yùn)算.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:對于形如這樣的二次三項(xiàng)式,可以用公式法將它分解成的形式.但對于二次三項(xiàng)式,就不能直接運(yùn)用公式了.此時(shí),我們可以在二次三項(xiàng)式中先加上一項(xiàng),使它與的和成為一個(gè)完全平方式,再減去,整個(gè)式子的值不變,于是有:
像這樣,先添一適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為“配方法”,利用“配方法",解決下列問題:
(1)分解因式:.
(2)比較代數(shù)式與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為36,則PD+PE+PF=( )
A.12
B.8
C.4
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)分別在x軸和y軸上,OA=1,OB= ,連接AB,過AB中點(diǎn)C1分別作x軸和y軸的垂線,垂足分別是點(diǎn)A1、B1 , 連接A1B1 , 再過A1B1中點(diǎn)C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評價(jià)得分由測試成績(滿分100分)和平時(shí)成績(滿分100分)兩部分組成,其中測試成績占80%,平時(shí)成績占20%,并且當(dāng)綜合評價(jià)得分大于或等于80分時(shí),該生綜合評價(jià)為A等.
(1)孔明同學(xué)的測試成績和平時(shí)成績兩項(xiàng)得分之和為185分,而綜合評價(jià)得分為91分,則孔明同學(xué)測試成績和平時(shí)成績各得多少分?
(2)某同學(xué)測試成績?yōu)?0分,他的綜合評價(jià)得分有可能達(dá)到A等嗎?為什么?
(3)如果一個(gè)同學(xué)綜合評價(jià)要達(dá)到A等,他的測試成績至少要多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點(diǎn),S△DEF=4,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點(diǎn),AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、C、E三點(diǎn)在同一條直線上,AC∥DE,AC=CE,∠ACD=∠B.
(1)求證:BC=DE
(2)若∠A=40°,求∠BCD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com