【題目】在2008年春運期間,我國南方出現(xiàn)大范圍冰雪災(zāi)害,導(dǎo)致某地電路斷電.該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),15分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果兩車同時到達(dá)搶修工地.已知吉普車速度是搶修車速度的1.5倍,求這兩種車的速度.

【答案】解:設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時.由題意得:
解得:x=20.
經(jīng)檢驗:x=20是原方程的解.
∴當(dāng)x=20時,1.5x=30.
答:搶修車的速度為20千米/時,吉普車的速度為30千米/時
【解析】速度分別是:設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時;路程:都是15千米,時間表示為: .關(guān)鍵描述語為:“搶修車裝載著所需材料先從供電局出發(fā),15分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果兩車同時到達(dá)搶修工地”.等量關(guān)系為:搶修車的時間﹣吉普車的時間=
【考點精析】根據(jù)題目的已知條件,利用分式方程的應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2(a+3)的值與2互為相反數(shù),則a的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點分別為A、B,將OBA對折,使點O的對應(yīng)點H落在直線AB上,折痕交x軸于點C.

(1)直接寫出點C的坐標(biāo),并求過A、B、C三點的拋物線的解析式;

(2)若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標(biāo);若不存在,說明理由;

(3)設(shè)拋物線的對稱軸與直線BC的交點為T,Q為線段BT上一點,直接寫出|QA﹣QO|的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù):2,1,x7,3,532的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是( )

A. 2 B. 2.5 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線l1;y=ax2+bx+c(a0)經(jīng)過原點,與x軸的另一個交點為B(4,0),點A為頂點,且直線OA的解析式為y=x.

(1)如圖1,求拋物線l1的解析式;

(2)如圖2,將拋物線l1繞原點O旋轉(zhuǎn)180°,得到拋物線l2,l2與x軸交于點B′,頂點為A′,點P為拋物線l1上一動點,連接PO交l2于點Q,連接PA、PA′、QA′、QA.

請求:平行四邊形PAQA′的面積S與P點橫坐標(biāo)x(2x4)之間的關(guān)系式;

(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點H,使得HB=HA′?若存在,請求出點H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C、D同時出發(fā),當(dāng)動點D到達(dá)原點O時,點C、D停止運動.

(1)直接寫出拋物線的解析式:

(2)求△CED的面積S與D點運動時間t的函數(shù)解析式;當(dāng)t為何值時,△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點D、E.

(1)若∠A=40°,求∠DCB的度數(shù).
(2)若AE=4,△DCB的周長為13,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長為a,寬為b(a>b)的長方形的周長為14,面積為10,則ab(a+b)的值為(

A. 40 B. 50 C. 60 D. 70

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.
證明:DE=BD+CE.

(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

同步練習(xí)冊答案