已知:如圖,小正六邊形的邊長是1,大正六邊形的邊長的2,A是小正六邊形的一個頂點,若小正六邊形沿大正六邊形內側滾動一周,回到原來的位置,則點A的行程為________(結果保留π).


分析:首先畫出點A運動的大致路線,確定不同運動過程中,A點所走過的弧所在圓的圓心和半徑,然后根據(jù)弧長公式求出它們的值,再相加即可.
解答:解:如右圖;
當點A運動到A′時,A點運動的距離為以B為圓心,AB為半徑,∠ABA′為圓心角的弧長;
即C1==
當點A′運動到A″時,A點運動的距離為以C為圓心,CA′為半徑,∠A′CA″為圓心角的弧長;
易求得CA′=2,∠A′CA″=60°,
則C2==;
當點A″運動到A'''時,A點運動的距離為以D為圓心,DA'''為半徑,∠A″DA'''為圓心角的弧長,
同上可求得C3=C1=;
故從A到A''',一共運動的距離為:C1+C2+C3=;
當從點A'''到A時,A點運動的規(guī)律同上,故A點轉動一周的距離為:
點評:此題主要考查了正多邊形的性質以及弧長的計算公式,找出A點不同運動過程的圓心和半徑是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,小正六邊形的邊長是1,大正六邊形的邊長的2,A是小正六邊形的一個頂點,若小正六邊形沿大正六邊形內側滾動一周,回到原來的位置,則點A的行程為
 
(結果保留π).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:如圖,小正六邊形的邊長是1,大正六邊形的邊長的2,A是小正六邊形的一個頂點,若小正六邊形沿大正六邊形內側滾動一周,回到原來的位置,則點A的行程為______(結果保留π).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省鎮(zhèn)江中學高中單獨招生考試數(shù)學試卷(解析版) 題型:填空題

已知:如圖,小正六邊形的邊長是1,大正六邊形的邊長的2,A是小正六邊形的一個頂點,若小正六邊形沿大正六邊形內側滾動一周,回到原來的位置,則點A的行程為    (結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前10日信息題復習題精選(6)(解析版) 題型:填空題

已知:如圖,小正六邊形的邊長是1,大正六邊形的邊長的2,A是小正六邊形的一個頂點,若小正六邊形沿大正六邊形內側滾動一周,回到原來的位置,則點A的行程為    (結果保留π).

查看答案和解析>>

同步練習冊答案