在平面直角坐標系中,點O是坐標原點、已知等腰梯形OABC,OA∥BC,點A(4,0),BC=2,等腰梯形OABC的高是1,且點B、C都在第一象限.
(1)請畫出一個平面直角坐標系,并在此坐標系中畫出等腰梯形OABC;
(2)直線y=-
1
5
x+
6
5
與線段AB交于點P(p,q),點M(m,n)在直線y=-
1
5
x+
6
5
上,當n>q時,求m的取值范圍.
分析:(1)求出梯形的各個頂點的坐標即可;
(2)利用待定系數(shù)法即可求得AB的解析式,進而求得P的坐標,即可求解.
解答:精英家教網(wǎng)解:(1)畫平面直角坐標系.
畫等腰梯形OABC(其中點B(3,1)、點C(1,1)).

(2)依題意得,B(3,1)
設(shè)直線AB:y=kx+b,
將A(4,0)B(3,1)代入得
k=-1
b=4

∴直線AB:y=-x+4.

法一:
解方程組
y=-x+4
y=-
1
5
x+
6
5
得x=
7
2
,即p=
7
2
,
∵函數(shù)y=-
1
5
x+
6
5
隨著x的增大而減小,
∴要使n>q,須m<p,
∴當n>q時,m的取值范圍是m<
7
2


法二:
解方程組
y=-x+4
y=-
1
5
x+
6
5
x=
7
2
y=
1
2
∴p=
7
2
,q=
1
2
,
∴點M(m,n)在直線y=-
1
5
x+
6
5

∴n=-
1
5
m+
6
5

∵n>q
∴-
1
5
m+
6
5
1
2
,
∴m<
7
2

∴當n>q時,m的取值范圍是m<
7
2
點評:此題把一次函數(shù)與等腰梯形相結(jié)合,考查了同學們綜合運用所學知識的能力,是一道綜合性較好的題目.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案