【題目】如圖,點(diǎn)O為矩形ABCD的對(duì)稱中心,AB=10cm,BC=12cm,點(diǎn)E、F、G分別從A、B、C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針?lè)较騽蛩龠\(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)F的運(yùn)動(dòng)速度為3cm/s,點(diǎn)G的運(yùn)動(dòng)速度為1.5cm/s,當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,△EBF關(guān)于直線EF的對(duì)稱圖形是△EB′F.設(shè)點(diǎn)E、F、G運(yùn)動(dòng)的時(shí)間為t(單位:s).
(1)當(dāng)t=s時(shí),四邊形EBFB′為正方形;
(2)若以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似,求t的值;
(3)是否存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)2.5
(2)
解:分兩種情況,討論如下:
①若△EBF∽△FCG,
則有 ,即 ,
解得:t=2.8;
②若△EBF∽△GCF,
則有 ,即 ,
解得:t=﹣14﹣2 (不合題意,舍去)或t=﹣14+2 .
∴當(dāng)t=2.8s或t=(﹣14+2 )s時(shí),以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似
(3)
解:假設(shè)存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合.
如圖,過(guò)點(diǎn)O作OM⊥BC于點(diǎn)M,則在Rt△OFM中,OF=BF=3t,F(xiàn)M= BC﹣BF=6﹣3t,OM=5,
由勾股定理得:OM2+FM2=OF2,
即:52+(6﹣3t)2=(3t)2
解得:t= ;
過(guò)點(diǎn)O作ON⊥AB于點(diǎn)N,則在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,
由勾股定理得:ON2+EN2=OE2,
即:62+(5﹣t)2=(10﹣t)2
解得:t=3.9.
∵ ≠3.9,
∴不存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合
【解析】解:(1)若四邊形EBFB′為正方形,則BE=BF,BE=10﹣t,BF=3t,
即:10﹣t=3t,解得t=2.5;(1)利用正方形的性質(zhì),得到BE=BF,列一元一次方程求解即可;(2)△EBF與△FCG相似,分兩種情況,需要分類討論,逐一分析計(jì)算;(3)本問(wèn)為存在型問(wèn)題.假設(shè)存在,則可以分別求出在不同條件下的t值,它們互相矛盾,所以不存在.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用相似三角形的應(yīng)用,掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩所學(xué)校共82人參加文藝匯演(其中甲校人數(shù)多于乙校人數(shù),且甲校人數(shù)小于80人),如果兩所學(xué)校分別購(gòu)買服裝,共付款6060元.
購(gòu)買服裝套數(shù) | 1~40 | 41~80 | 81套及81套以上 |
每套服裝價(jià)格 | 80元 | 70元 | 60元 |
(1)如果甲、乙兩所學(xué)校聯(lián)合起來(lái)購(gòu)買服裝,那么比各自購(gòu)買服裝一共可以節(jié)約多少錢?
(2)甲、乙兩所學(xué)校各有多少學(xué)生參加演出?
(3)如果乙學(xué)校單獨(dú)購(gòu)買時(shí),服裝廠每件服裝獲利60%,丙學(xué)校購(gòu)買的服裝比乙多15套,那么服裝廠賣給丙學(xué)校服裝時(shí)共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時(shí),他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過(guò)t min時(shí),小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2m,圖中折線OABD、線段EF分別表示s1、s2與t之間的函數(shù)關(guān)系的圖象.
(1)求s2與t之間的函數(shù)關(guān)系式;
(2)小明從家出發(fā),經(jīng)過(guò)多長(zhǎng)時(shí)間在返回途中追上爸爸?這時(shí)他們距離家還有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上和有理數(shù) a、b、c 對(duì)應(yīng)的點(diǎn)的位置如圖所示,有下面四個(gè)結(jié)論:①abc<0;②|a﹣b|+|b﹣c|=|a﹣c|③(a﹣b)(b﹣c)(c﹣a)>0;④|a|<1﹣bc,其中正確的結(jié)論有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形紙片ABCD,點(diǎn)G在AB邊上,點(diǎn)H在BC邊上,連接GH,將∠CHG對(duì)折,點(diǎn)C落在直線HG上的點(diǎn)C′處,點(diǎn)D落在點(diǎn)D′處,得到折痕FH,C′D′與AD邊交于點(diǎn)E
(1)如果∠CHF=80°,那么∠BHG的度數(shù)是多少?
(2)如果∠DFH=110°,那么∠D′FE的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在活動(dòng)課上,小明和小紅合作用一副三角板來(lái)測(cè)量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測(cè)得旗桿頂端M仰角為45°;小紅眼睛與地面的距離(CD)是1.5m,用同樣的方法測(cè)得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點(diǎn)B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): , ,結(jié)果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于的多項(xiàng)式用記號(hào)的形式來(lái)表示(可用其它字母,但不同的字母表示不同的多項(xiàng)式),例如,把=某數(shù)時(shí)的多項(xiàng)式的值用來(lái)表示.
例如時(shí)多項(xiàng)式的值記為,
已知,
(1)求的值
(2)若,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時(shí)后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為海里/小時(shí).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com