【題目】觀察圖中正方形四個(gè)頂點(diǎn)所標(biāo)的數(shù)字規(guī)律,可知數(shù)2019應(yīng)標(biāo)在(

A. 505個(gè)正方形的左上角B. 505個(gè)正方形的右下角

C. 504個(gè)正方形的左上角D. 504個(gè)正方形的右下角

【答案】A

【解析】

首先發(fā)現(xiàn)四個(gè)數(shù)的排列規(guī)律,然后設(shè)第n個(gè)正方形中標(biāo)記的最大的數(shù)為an,觀察給定圖形,可找出規(guī)律“an=4n”,依此規(guī)律即可得出結(jié)論.

觀察圖形發(fā)現(xiàn)奇數(shù)個(gè)正方形的四個(gè)角上的數(shù)字逆時(shí)針排列,偶數(shù)個(gè)圖形順時(shí)針排列,

2019=504×4+3,

2019應(yīng)該在第505個(gè)正方形的角上,

∴應(yīng)該逆時(shí)針排列,

設(shè)第n個(gè)正方形中標(biāo)記的最大的數(shù)為an

觀察給定正方形,可得出:

每個(gè)正方形有4個(gè)數(shù),即an=4n

所以數(shù)2019應(yīng)標(biāo)在第505個(gè)正方形左上角

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)計(jì)劃對(duì)面積為1600m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來(lái)完成,若甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用5天.若甲隊(duì)每天綠化費(fèi)用是0.6萬(wàn)元,乙隊(duì)每天綠化費(fèi)用為0.25萬(wàn)元,規(guī)定甲乙兩隊(duì)單獨(dú)施工的總天數(shù)不超過(guò)25天完成,且施工總費(fèi)用最低,則最低費(fèi)用為__________萬(wàn)元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作AE的垂線,垂足為D,直線DC與AB的延長(zhǎng)線交于點(diǎn)P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若tan∠P=,AD=6,求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,BAy軸于點(diǎn)A,BCx軸于點(diǎn)C,函數(shù)的圖象分別交BA,BC于點(diǎn)D,E當(dāng)AD:BD=1:3的面積為18時(shí),則k的值是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,OABC的一個(gè)頂點(diǎn)與坐標(biāo)原點(diǎn)重合,OA邊落在x軸上,且OA=4,OC=2,COA=45°.反比例函數(shù)y=k0,x0)的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,連接ACCD

1)試求反比例函數(shù)的解析式;

2)求證:CD平分∠ACB;

3)如圖2,連接OD,在反比例的函數(shù)圖象上是否存在一點(diǎn)P,使得SPOC=SCOD?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點(diǎn),且∠A=2∠DCB.EBC邊上的一點(diǎn),以EC為直徑的⊙O經(jīng)過(guò)點(diǎn)D.

(1)求證:AB⊙O的切線;

(2)若CD的弦心距為1,BE=EO,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D1,2,與x軸的一個(gè)交點(diǎn)A在點(diǎn)3,0

2,0之間,其部分圖象如下圖,則以下結(jié)論:b24ac<0;a+b+c<0;ca=2;方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根其中正確結(jié)論的個(gè)數(shù)為( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某校九年級(jí)(1)20名學(xué)生某次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)統(tǒng)計(jì)表:

成績(jī)()

60

70

80

90

100

人數(shù)()

1

5

x

y

2

(1)若這20名學(xué)生成績(jī)的平均分?jǐn)?shù)為82分,求xy的值;

(2)(1)的條件下,設(shè)這20名學(xué)生本次測(cè)驗(yàn)成績(jī)的眾數(shù)為a,中位數(shù)為b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案