【題目】如圖,將等邊△ABD沿BD中點(diǎn)旋轉(zhuǎn)180°得到△BDC.現(xiàn)給出下列命題:
①四邊形ABCD是菱形;
②四邊形ABCD是中心對稱圖形;
③四邊形ABCD是軸對稱圖形;
④AC=BD.
其中正確的是(寫上正確的序號).
【答案】①②③
【解析】解:∵△ABD是等邊三角形,
∴AB=BD=AD,
∵將等邊△ABD沿BD中點(diǎn)旋轉(zhuǎn)180°得到△BDC,
∴AB=CD,AD=BC,
∴AB=AD=CD=BC,
∴四邊形ABCD是菱形;故命題①正確;
∵菱形既是中心對稱圖形,又是軸對稱圖形,
∴命題②、③正確;
∵AC= BD,
∴命題④錯誤.
所以答案是①②③.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用旋轉(zhuǎn)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)的序號填到相應(yīng)的橫線上:
①+5,②-3,③0,④-1.414,⑤17,⑥-.
正整數(shù):______________________________________________________;
負(fù)分?jǐn)?shù):______________________________________________________;
負(fù)有理數(shù):____________________________________________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求解下列方程.
(1)(x﹣3)2=16
(2)x2﹣4x=5(配方法)
(3)x2﹣4x﹣5=0(公式法)
(4)x2﹣5x=0(因式分解法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=AC=2.以AC為一邊,在△ABC外部作等腰直角三角形ACD,則線段BD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c圖象對稱軸是直線x=1,則下列結(jié)論:
①a<0,b<0,
②2a﹣b>0,
③a+b+c>0,
④a﹣b+c<0,
⑤當(dāng)x>1時,y隨x的增大而減小,
其中正確的是( )
A.①②③
B.②③④
C.③④⑤
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)x2﹣2x﹣8=0;
(2)3x(x﹣1)=2(x﹣1);
(3)x2+3=3(x+1);
(4)2x(4x+5)=7;
(5)4x2﹣8x+1=0;
(6)(y+2)2=(3y﹣1)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正△ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.若將△PAC繞點(diǎn)A逆時針旋轉(zhuǎn)后,得到△P′AB.
(1)求旋轉(zhuǎn)角的度數(shù);
(2)求點(diǎn)P與點(diǎn)P′之間的距離;
(3)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個二次函數(shù)圖象的頂點(diǎn)、開口方向都相同,則稱這兩個二次函數(shù)為“同簇二次函數(shù)”.
(1)請寫出兩個為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的圖象經(jīng)過點(diǎn)A(1,1),若y1+y2與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)0≤x≤3時,y2的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com