已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上以每秒1個(gè)單位的速度由C向B運(yùn)動(dòng).

(1) 求梯形ODPC的面積S與時(shí)間t的函數(shù)關(guān)系式;
(2) 在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形.若存在求t值;若不存在,說明理由;
(3) 當(dāng)△OPD為等腰三角形時(shí),直接寫出點(diǎn)P的坐標(biāo).

(1)(2)在線段PB上存在一點(diǎn)Q,使得四邊形ODQP為菱形,此時(shí);(3)P1(3,4)   P2(2.5,4)   P3(2,4)   P4(8,4)

解析試題分析:解:(1) ∵A(10,0),C(0,4)
∴OA=10,OC=4
∵點(diǎn)D是OA的中點(diǎn)
∴OD=5
                     
(2) 假設(shè)在線段PB上存在一點(diǎn)Q,使得四邊形ODQP為菱形(如圖)

連結(jié)OP、DQ
∵四邊形ODQP為菱形
∴OP=OD=5
∵∠OCB=90°
∴OC2+PC2=OP2
∴PC=

此時(shí),PB=
∴在線段PB上存在一點(diǎn)Q,使得四邊形ODQP為菱形,此時(shí)    
(3) 當(dāng)△OPD為等腰三角形時(shí),有以下幾種情況:
P1(3,4)   P2(2.5,4)   P3(2,4)   P4(8,4)              
考點(diǎn):矩形、等腰三角形,平行四邊形、菱形的判定和應(yīng)用,勾股定理的運(yùn)用
點(diǎn)評(píng):本題難度系數(shù)中等,綜合考查了矩形的性質(zhì),坐標(biāo)與圖形的性質(zhì),等腰三角形的性質(zhì),平行四邊形的判定及性質(zhì),菱形的判定及性質(zhì),勾股定理的運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O為坐標(biāo)原點(diǎn),半徑為4的⊙Q與y軸相切于點(diǎn)O,圓心Q在x軸的負(fù)半軸上.精英家教網(wǎng)
(1)請(qǐng)直接寫出圓心Q的坐標(biāo);
(2)設(shè)一次函數(shù)y=-2mx+2m的圖象與x軸的正半軸、y軸的正半軸分別相交于點(diǎn)A、B,且T在y軸上,OT=2,連接QT,∠OQT=∠OBA.
①求m的值;
②試問在y=-2mx+2m的圖象上是否存在點(diǎn)P,使得⊙P與⊙Q、y軸都相切?若存在,請(qǐng)求出圓心P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng).
(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?
(2)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值;若不存在,請(qǐng)說明理由;
(3)△OPD為等腰三角形時(shí),寫出點(diǎn)P的坐標(biāo)(不必寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上以每秒1個(gè)單位的速度由C向B運(yùn)動(dòng).
(1)求梯形ODPC的面積S與時(shí)間t的函數(shù)關(guān)系式.
(2)t為何值時(shí),四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形.若存在求t值,若不存在,說明理由.
(4)當(dāng)△OPD為等腰三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案