【題目】某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖. 已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關(guān)系式為為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關(guān)系如下表:

時間第

1

2

3

80

銷售單價(元/

49. 5

49

48. 5

10

1)寫出銷售單價(元/)與時間第天之間的函數(shù)關(guān)系式;

2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?

【答案】1;(2)第19天的日銷售利潤最大,最大利潤是4761.

【解析】

1)設(shè)銷售單價p(元/kg)與時間第t天之間的函數(shù)關(guān)系式為:p=kt+b,將(1,49.5),(2,49)代入,再解方程組即可得到結(jié)論;
2)設(shè)每天獲得的利潤為w元,由題意根據(jù)利潤=銷售額-成本,可得到w=-t-192+4761,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

1)設(shè)銷售單價(元)與時間第天之間的函數(shù)關(guān)系式為:,

代入,得,

解得.

∴銷售單價(元)與時間第天之間的函數(shù)關(guān)系式為.

2)設(shè)每天獲得的利潤為.

由題意,得

.

,

有最大值. 時, 最大,此時,(元)

答:第19天的日銷售利潤最大,最大利潤是4761.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是超市的手推車,如圖2是其側(cè)面示意圖,已知前后車輪半徑均為5 cm,兩個車輪的圓心的連線AB與地面平行,測得支架ACBC60cm,AC、CD所在直線與地面的夾角分別為30°、60°CD50cm

1)求扶手前端D到地面的距離;

2)手推車內(nèi)裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點H到點C的距離為10 cm,DF20cm,EFAB,∠EHD45°,求坐板EF的寬度.(本題答案均保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,,,以A為圓心,任意長為半徑畫弧分別交AB、AC于點MN再分別以MN為圓心,大于的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法中正確的有________

AD的平分線;②;③點DAB的中垂線上;④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,, 是邊上一動點(不與重合)=于點,,則線段的最大值為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019930日,由著名導(dǎo)演李仁港執(zhí)導(dǎo)的電影《攀登者》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用模球的辦法決定勝負,獲勝者去看電影,游戲規(guī)則如下:在一個不透明的袋子中裝有編號1-4的四個球(除編號外都相同),從中隨機摸出一個球,記下數(shù)字后放回,再從中摸出一個球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.

1)請用列表或畫樹狀圖的方法表示出隨機摸球所有可能的結(jié)果;

2)分別求出小亮和小麗獲勝的概率,并判斷這種游戲規(guī)則對兩人公平嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:

1)本次調(diào)查中,王老師一共調(diào)查了   名學生;

2)將條形統(tǒng)計圖補充完整;

3)為了共同進步,王老師從被調(diào)查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:;;其中所有正確結(jié)論的序號是( )

A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,把ABC沿直線MN翻折,點A落在線段BC上的D點位置(D不與BC重合),設(shè)∠AMNα

1)用含α的代數(shù)式表示∠MDB和∠NDC,并確定的α取值范圍;

2)若α45°,求BDDC的值;

3)求證:AMCNANBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC6cm,BC8cm.動點M從點B出發(fā),在線段BA上以每秒3cm的速度點A運動,同時動點N從點C出發(fā),在線段CB上以每秒2cm的速度向點B運動,其中一點到達終點后,另一點也停止運動.運動時間為t秒,連接MN.

1)填空:BM= cm.BN= cm.(用含t的代數(shù)式表示)

2)若BMNABC相似,求t的值;

3)連接ANCM,若ANCM,求t的值.

查看答案和解析>>

同步練習冊答案