已知拋物線y=x2-2mx+n+1的頂點(diǎn)A在x軸的負(fù)半軸上,與y軸交于點(diǎn)B,且AB=數(shù)學(xué)公式
(1)求此拋物線的解析式;
(2)將上述拋物線向右平移a個(gè)單位,再向下平移a個(gè)單位(a>0),設(shè)平移后的拋物線頂點(diǎn)為P,與x軸的兩個(gè)交點(diǎn)為M,N,試用a的代數(shù)式表示△PMN的面積S.

解:(1)由題意可得:A(m.n+1-m2),B(0,n+1),
依題意有AB2=m2+(n+1-m2-n-1)2=m4+m2=90,
解得m2=9,
由于A在x負(fù)半軸上,
因此m=-3,
由于A在x軸上,
因此n+1-m2=0,n+1-9=0,
因此n=8,
∴拋物線的解析式為y=x2+6x+9.

(2)由題意知:平移后的拋物線的解析式為y=(x+3-a)2-a,
因此頂點(diǎn)P的坐標(biāo)為(a-3,-a),
M,N的坐標(biāo)分別為(a-3-,0),(a-3+,0);
因此MN=2
S=MN•a=a•
分析:(1)先根據(jù)拋物線的解析式得出頂點(diǎn)A的坐標(biāo)和B點(diǎn)的坐標(biāo),然后根據(jù)AB的長,求出m的值,由于A在x軸負(fù)半軸上,A點(diǎn)的縱坐標(biāo)為0,由此可求出n的值.已知了m,n的值即可求出拋物線的解析式.
(2)先表示出平移后的函數(shù)解析式,然后求出P,M,N三點(diǎn)的坐標(biāo),根據(jù)三角形的面積公式即可求出S的表達(dá)式.
點(diǎn)評:本題主要考查了二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點(diǎn)等知識及綜合應(yīng)用知識、解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習(xí)冊答案