如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
分析:(1)根據(jù)已知得到B(0,c),A(-c,0),把A的坐標(biāo)代入解析式即可求出答案;
(2)由平行四邊形OABC得到BC=AO=c,點(diǎn)B的坐標(biāo)為(0,c),根據(jù)平行四邊形的性質(zhì)得到C的坐標(biāo),把C的坐標(biāo)代入解析式和b+c=1組成方程組,即可求出b、c的值,即得到拋物線的解析式;
(3)過點(diǎn)P作PM⊥y軸,PN⊥BC,垂足分別為M、N,根據(jù)角平分線的性質(zhì)得到PM=PN,設(shè)點(diǎn)P的坐標(biāo)為(x,-x2+
1
2
x+
1
2
)
,代入解析式即可求出P的坐標(biāo).
解答:解:(1)由題意得:點(diǎn)B的坐標(biāo)為(0,c),其中c>0,OB=c,
∵OA=OB,點(diǎn)A在x軸的負(fù)半軸上,
∴點(diǎn)A的坐標(biāo)為(-c,0),
∵點(diǎn)A在拋物線y=-x2+bx+c上,
∴0=-c2-bc+c,
∵c>0,
∴兩邊都除以c得:0=-c-b+1,
b+c=1,
答:b+c的值是1.
精英家教網(wǎng)
(2)解:∵四邊形OABC是平行四邊形
∴BC=AO=c,
又∵BC∥x軸,點(diǎn)B的坐標(biāo)為(0,c)
∴點(diǎn)C的坐標(biāo)為(c,c),
又點(diǎn)C在拋物線上,
∴c=-c2+bc+c
∴b-c=0或c=0(舍去),
又由(1)知:b+c=1,
b=
1
2
,c=
1
2

∴拋物線的解析式為y=-x2+
1
2
x+
1
2
,
答:拋物線的解析式是y=-x2+
1
2
x+
1
2


(3)解:過點(diǎn)P作PM⊥x軸,PN⊥y軸,垂足分別為M、N,PM交BC的延長線于H,精英家教網(wǎng)

∵由(2)知BC∥x軸,PM⊥x軸,
∴PH⊥BC,
∵BP平分∠OBC,PN⊥y軸,PH⊥BC,
∴PN=PH,
設(shè)點(diǎn)P的坐標(biāo)為(x,-x2+
1
2
x+
1
2
)

∴PN=x,ON=PM=-(-x2+
1
2
x+
1
2

∴BN=BO+ON=
1
2
-(-x2+
1
2
x+
1
2
),PN=x,
∴BN=PN,即
1
2
-(-x2+
1
2
x+
1
2
)=x
,
解得:x=
3
2
或x=0,
當(dāng)x=
3
2
時,-x2+
1
2
x+
1
2
=-1,
∴點(diǎn)P的坐標(biāo)為(1.5,-1),
當(dāng)x=0時,-x2+
1
2
x+
1
2
=
1
2
,、
∴點(diǎn)P的坐標(biāo)為(0,
1
2
),此時P和B重合,舍去,
答:點(diǎn)P的坐標(biāo)是(1.5,-1).
點(diǎn)評:本題主要考查了用待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)上點(diǎn)的坐標(biāo)特征,平行四邊形的性質(zhì),角平分線的性質(zhì),解一元二次方程等知識點(diǎn),能運(yùn)用題中隱含的條件求二次函數(shù)的解析式是解此題的關(guān)鍵,此題是一個綜合性比較強(qiáng)的題目,有一定的難度,但題型較好.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(4)點(diǎn)Q是直線BC上的一個動點(diǎn),若△QOB為等腰三角形,請寫出此時點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時動點(diǎn)M從O點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時,正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案