如圖,已知拋物線y=x2-2x+n與x軸交于不同的兩點(diǎn)A,B,其頂點(diǎn)是C,D是拋物線的對(duì)稱軸與x軸的交點(diǎn).
(1)求實(shí)數(shù)n的取值范圍.
(2)求頂點(diǎn)C的坐標(biāo);
(3)求線段AB的長(zhǎng);
(4)若直線y=
2
x+1分別交x軸于E,交y軸于F,問(wèn)△BDC與△EOF是否有可能全等?如果有可能全等請(qǐng)給出證明;如果不可能全等請(qǐng)說(shuō)明理由.
(1)令y=0,則有:x2-2x+n=0,
依題意有:△=4-4n>0,
∴n<1.
由于拋物線與y軸的交點(diǎn)在y軸正半軸上,
因此0<n<1.

(2)y=x2-2x+n=(x-1)2+n-1,
∴C(1,n-1).

(3)令y=0,x2-2x+n=0,
解得x=1+
1-n
,x=1-
1-n
,
∴B(1+
1-n
,0),A(1-
1-n
,0),
∴AB=2
1-n


(4)易知:E(-
2
2
,0),F(xiàn)(0,1),
∴OE=
2
2
,OF=1.
由(2)(3)可得BD=
1-n
,CD=1-n,
①當(dāng)OE=CD時(shí),1-n=
2
2
,
1-n
=
2
2
≠1,因此BD≠OF,
∴兩三角形不可能全等.
②當(dāng)OE=BD時(shí),
1-n
=
2
2
,1-n=
1
2
≠1,因此CD≠OF,
∴兩三角形不全等.
綜上所述,△BDC與△EOF不可能全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)(-2,0)(1,0)(0,2)
(1)求二次函數(shù)的解析式;
(2)寫(xiě)出頂點(diǎn)坐標(biāo)和對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,對(duì)稱軸為直線x=4的拋物線y=ax2+2x與x軸相交于點(diǎn)B、O.
(1)求拋物線的解析式.
(2)連接AB,平移AB所在的直線,使其經(jīng)過(guò)原點(diǎn)O,得到直線l.點(diǎn)P是l上一動(dòng)點(diǎn),當(dāng)△PAB的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo).
(3)當(dāng)△PAB的周長(zhǎng)最小時(shí),在直線AB的上方是否存在一點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形與△POB相似?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.(規(guī)定:點(diǎn)Q的對(duì)應(yīng)頂點(diǎn)不為點(diǎn)O)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表
x-1012
y10521
(1)求該二次函數(shù)的解析式;
(2)函數(shù)值y隨x的增大而增大時(shí),x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的解析式和對(duì)稱軸;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC是以AC為斜邊的Rt△時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)設(shè)過(guò)點(diǎn)A的直線與拋物線在第一象限的交點(diǎn)為N,當(dāng)△ACN的面積為
15
8
時(shí),求直線AN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),其對(duì)稱軸為直線x=2.
(1)求拋物線的解析式;
(2)若點(diǎn)P為拋物線的頂點(diǎn),求△PBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=-x2+bx+c的圖象如圖所示,則此拋物線的解析式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=a,BC=b,
b
3
≤a≤3b
,AE=AH=CF=CG,則四邊形EFGH的面積的最大值是( 。
A.
1
16
(a+b)2
B.
1
8
(a+b)2
C.
1
4
(a+b)2
D.
1
2
(a+b)2

查看答案和解析>>

同步練習(xí)冊(cè)答案