【題目】已知B港口位于A觀測點北偏東53.2°方向,且其到A觀測點正北方向的距離BD的長為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測得C處位于A觀測點北偏東79.8°方向,求此時貨輪與A觀測點之間的距離AC的長(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)
【答案】解:由路程=速度×?xí)r間,得BC=40×=10。
在Rt△ADB中,sin∠DBA=,sin53.2°≈0.8,
∴AB=。
如圖,過點B作BH⊥AC,交AC的延長線于H,
在Rt△AHB中,∠BAH=∠DAC-∠DAB=63.6°-37°=26.6°,
∴tan∠BAH=,0.5=,AH=2BH。
又∵BH2+AH2=AB2,即BH2+(2BH)2=202,∴BH=4, AH=8。
在Rt△BCH中,BH2+CH2=BC2,即(4)2+CH2=102,解得CH=2。
∴AC=AH-CH=8-2=6≈13.4。
答:此時貨輪與A觀測點之間的距離AC約為13.4km。
【解析】解直角三角形的應(yīng)用(方向角問題)銳角三角函數(shù)定義,勾股定理。
根據(jù)在Rt△ADB中,sin∠DBA=,得出AB的長,從而得出tan∠BAH=,求出BH的長,即可得出AH以及CH的長,從而得出答案。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當(dāng)點P在B、D兩點之間運動時,問∠APC與α、β之間有何數(shù)量關(guān)系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側(cè)運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊AB延長至點E,使BE=AB,連接DE、EC、BD、DE交BC于點O.
(1)求證:△ABD≌△BEC;
(2)若∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.
(1)請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為AB=|a﹣b|,回答下列問題:
(1)數(shù)軸上表示1和﹣3的兩點之間的距離是 ;
(2)數(shù)軸上表示x和﹣1的兩點分別是點A和B,如果AB=2,那么x= ;
(3)當(dāng)|x﹣6|+|x﹣1|的最小值是 。若|x﹣3|+|x﹣b|的最小值為4,則b的值為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1);
(2)
(3)(代入消元法);
(4)(加減消元法)
解不等式組,并把解集在數(shù)軸上表示出來:
(5);
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實際,需購進(jìn)電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正確的結(jié)論的有__________.(把正確結(jié)論的序號都寫上去)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求若干個相同的不為零的有理數(shù)的除法運算叫做除方.
如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類比有理數(shù)的乘方,我們把 2÷2÷2 記作 2③,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3)④,讀作“-3 的圈 4 次方”.
一般地,把(a≠0)記作,讀作“a的圈n次方”.
(1)直接寫出計算結(jié)果: _____, _________, ___________,
(2)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,
請嘗試將有理數(shù)的除方運算轉(zhuǎn)化為乘方運算,歸納如下:一個非零有理數(shù)的圈 n 次方等于_____.
(3)計算 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com