【題目】如圖,正方形ABCD的邊長是,連接交于點O,并分別與邊交于點,連接AE,下列結論: ; ; ; 時, ,其中正確結論的個數(shù)是

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】四邊形ABCD是正方形,AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在DAP與ABQ中,AD=AB,∠DAP=∠ABQ,AP=BQ,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP,則正確

∵∠DOA=AOP=90,ADO+P=ADO+DAO=90°,∴∠DAO=P∴△DAO∽△APO,=,所以OA2=OD·OP,AEAB,AEAD,ODOE,OA2≠OEOP錯誤;

CQF與BPE中,∠FCQ=∠EBP,∠Q=∠P,CQ=BP,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在ADF與DCE中,AD=CD,∠ADC=∠DCE,DF=CE,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;正確;

BP=1,AB=3,AP=4,∵△AOP∽△DAP,==BE=,QE=,∵△QOE∽△PAD,===,QO=OE=,AO=5-QO=,tanOAE==,則錯誤,故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中

①一個角的兩邊分別垂直于另一角的兩邊,則這兩個角相等或互補

②若點Ay=2x﹣3上,且點A到兩坐標軸的距離相等,則點A在第一象限

③半徑為5的圓中,弦AB=8,則圓周上到直線AB的距離為2的共有四個

④如果ADABC的高,∠CAD=B,那么ABC是直角三角形

正確命題有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分)如圖,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于點E,交AC于點F,過點E作EG//BC交AC于點G.(1)求證: AE=AF; (2)若AG=4,AC=7,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( )

A.a2 B.a2 C.a2 D.a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列語句,畫出圖形并回答問題.

如圖,已知三點A,BC

1)分別作直線AB和射線AC;

2)作線段BC, BC的中點D

3)連接AD;

4)用量角器度量出∠ADB的度數(shù)最接近(

A.80° B. 90° C. 100° D. 110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初三學生組織甲、乙兩個旅行團去某景點旅游,已知甲團人數(shù)少于50人,乙團人數(shù)不超過100人.下面是小明與其他兩位同學交流的情況.根據(jù)他們的對話,組織者算了一下,若分別購票,兩團共計應付門票費1392元,若合在一起作為一個團體購票,總計應付門票費1080元.

(1)請你判斷乙團的人數(shù)是否也少于50人.

(2)求甲、乙兩旅行團各有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù))的圖象與直線相交于點C,過直線上點A1,3)作ABx軸于點B,交反比例函數(shù)圖象于點D,且AB=3BD.

1)求k的值;

2)求點C的坐標;

3)在y軸上確實一點M,使點MC、D兩點距離之和d=MC+MD,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCEBC上的一點,EC2BE,點DAC的中點,則EFAF_____;若SABC12,則SADFSBEF_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們都知道,表示4-2的差的絕對值,實際上也可理解為4-2兩數(shù)在數(shù)軸上所對應的兩點之間的距離,同理也可理解為3兩數(shù)在數(shù)軸上所對應的兩點之間的距離,就表示在數(shù)軸上對應的點到-1的距離,由上面絕對值的幾何意義,解答下列問題:

1)求 .

2)若,則 .

3)請你找出所有符合條件的整數(shù),使得.

4)求的最小值,并寫出此時的取值情況.

5)已知,求的最大值和最小值.

查看答案和解析>>

同步練習冊答案