【題目】如圖,拋物線 x軸交于點A1,0),頂點坐標(1,n),與y軸的交點在(0,3),(0,4)之間(包含端點),則下列結論:abc0;3a+b0;③﹣a1;a+bam2+bmm為任意實數(shù));一元二次方程 有兩個不相等的實數(shù)根,其中正確的有( 。

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】解:拋物線開口向下,a0,頂點坐標(1,n),對稱軸為直線x=1 =1,b=2a0y軸的交點在(0,3),(0,4)之間(包含端點),3≤c≤4,abc0,故錯誤;

3a+b=3a+﹣2a=a0,故正確;

x軸交于點A1,0),ab+c=0,a2a+c=0,c=3a,3≤3a≤4,∴﹣ a1,故正確;

頂點坐標為(1,n),x=1時,函數(shù)有最大值n,a+b+cam2+bm+c,a+bam2+bm,故正確;

一元二次方程有兩個相等的實數(shù)根x1=x2=1,故錯誤.

綜上所述,結論正確的是②③④3個.故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的是(

A.直角三角形的兩個銳角互余

B.三角形任意兩邊之差小于第三邊

C.三角形的三條角平分線交于一點,這個點叫做三角形的重心

D.線段垂直平分線上的點到這條線段兩個端點的距離相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x上有點A1,A2,A3…An+1,且OA1=1,A1A2=2,A2A3=4AnAn+1=2n分別過點A1,A2A3,…An+1作直線y=x的垂線,交y軸于點B1,B2,B3,…Bn+1,依次連接A1B2,A2B3,A3B4,…AnBn+1,得到△A1B1B2,A2B2B3,A3B3B4,AnBnBn+1,則△AnBnBn+1的面積為________.(用含有正整數(shù)n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2﹣2x+ca0)與x軸、y軸分別交于點AB,C三點,已知點A﹣20),點C0﹣8),點D是拋物線的頂點.

1)求拋物線的解析式及頂點D的坐標;

2)如圖1,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EBP沿直線EP折疊,使點B的對應點B'落在拋物線的對稱軸上,求點P的坐標;

3)如圖2,設BC交拋物線的對稱軸于點F,作直線CD,點M是直線CD上的動點,點N是平面內一點,當以點BF,MN為頂點的四邊形是菱形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A1,3),A123),A243),A383),B2,0),B14,0),B28,0),B3160).

1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按些變換規(guī)律將△OA3B3變換成△OA4B4,則A4的坐標是_______,B4的坐標是_________

2)若按第(1)題的規(guī)律將△OAB進行了n次變換,得到△OAnBn,比較每次變換中三角形頂點坐標有何變化,找出規(guī)律,請推測An的坐標是_______Bn的坐標是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種商品零售價為600元,為適應競爭,商店按零售價的八折銷售,則銷售價______元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調查中,最合適采用抽樣調查的是( 。

A.策坐高鐵對旅客的行李的檢查B.調查七年級一班全體同學的身高情況

C.了解長沙市民對春節(jié)晚會節(jié)目的滿意程度D.對新研發(fā)的新型戰(zhàn)斗機的零部件進行檢查

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P的坐標為(05),以P為圓心的圓與x軸相切,P的弦ABB點在A點右側)垂直于y軸,且AB=8,反比例函數(shù)k≠0)經過點B,則k=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個銳角的補角是這個角的余角的4倍,則這個銳角的度數(shù)為(

A.30°B.40°C.45°D.60°

查看答案和解析>>

同步練習冊答案