【題目】如圖 ,已知 中,AB=BC,,點 為斜邊 的中點,連接 AF 的平分線,分別與 BD 相交于點 E、F

(1)求證:

(2)如圖,連接 ,在不添加任何輔助線的條件下,直接寫出圖中所有的等腰三角形(不包含).

【答案】1)詳見解析;(2(2)ABD、△CBD 、△ECA、△BEF是等腰三角形

【解析】

1)根據(jù)直角三角形的性質(zhì)得到BDAC,∠DBC=45°,根據(jù)角平分線的定義得到∠BAF=22.5°,根據(jù)三角形內(nèi)角和定理計算,根據(jù)等腰三角形的判定定理證明即可;

2)根據(jù)等腰三角形的概念解答.

(1)證明:∠ABC=90,BA=BC,點D為斜邊AC的中點,

BDAC,DBC=45°,

AF是∠BAC的平分線,

∴∠BAF=22.5°,

∴∠BFE=67.5°,

∴∠BEF=180°EBFEFB=67.5°,

∴∠BFE=BEF,

BE=BF

(2)∵∠ABC=90°,BA=BC,點D為斜邊AC的中點,

BD=AD=CD,

∴△ABD、△CBD是等腰三角形,

由已知得,△ABC是等腰三角形,

(1)得,△BEF是等腰三角形,

AF是∠BAC的平分線,BD是∠ABC的平分線,

∴點E是△ABC的內(nèi)心,

∴∠EAC=ECA=22.5°,

∴△AEC是等腰三角形.

∴△ABD、△CBD 、△ECA、△BEF是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某摩托車廠家本周計劃每天生產(chǎn)300輛摩托車,由于工廠實行輪休,每天上班人數(shù)不一定相等,實際每天生產(chǎn)與計劃相比情況如下表:

星期

增減

5

+7

3

+4

+10

9

25

1)本周六生產(chǎn)了多少輛摩托車?

2)本周總產(chǎn)量與計劃相比是增加了還是減少了?具體數(shù)量是多少?產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算與化簡

1)(﹣2x3x6÷(﹣3x32

25mmn)﹣(5m+n)(mn

3)利用簡便方法計算:202022019×2021

4)先化簡,再求值:[a+b2﹣(ab)(a+b2b),其中a=﹣,b=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A、B兩點在直線l的同一側(cè),線段AO,BM均是直線l的垂線段,且BMAO的右邊,AO=2BM,將BM沿直線l向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線l相交于點P.

(1)當(dāng)PO重合時(如圖2所示),設(shè)點CAO的中點,連接BC.求證:四邊形OCBM是正方形;

(2)請利用如圖1所示的情形,求證:=;

(3)若AO=2,且當(dāng)MO=2PO時,請直接寫出ABPB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是用4個全等的小長方形與1個小正方形密鋪而成的正方形圖案.已知該圖案的面積為49,小正方形的面積為4,若分別用x,y(x >y)表示小長方形的長和寬,則下列關(guān)系式中不正確的是( )

A. x+y=7 B. x-y=2 C. x2 +y2=25 D. 4xy+4=49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.在ABC中,∠ACB=90°,點P為△ABC內(nèi)一點.

1)連接PBPC,將△BCP沿射線CA方向平移,得到△DAE,點B、CP的對應(yīng)點分別為點D、A、E,連接CE

①依題意,請在圖2中補(bǔ)全圖形;

②如果BPCE,ABBP=9,CE,求AB的長.

2)如圖3,以點A為旋轉(zhuǎn)中心,將△ABP順時針旋轉(zhuǎn)60°得到△AMN,連接PA、PBPC,當(dāng)AC=4,AB=8時,根據(jù)此圖求PAPBPC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是菱形ABCD的對角線,∠CBD=75°,

(1)請用尺規(guī)作圖法,作AB的垂直平分線EF,垂足為E,交ADF;(不要求寫作法,保留作圖痕跡)

(2)在(1)條件下,連接BF,求∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,AB=AC,點D是斜邊BC的中點,點E、F分別是AB、AC邊上的點,且DEDF.

1)證明:BE+CF=EF2

2)若BE=12,CF=5,求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一個長方形的紙片制作一個無蓋的長方體盒子,設(shè)這個長方形的長為a,寬為b,這個無蓋的長方體盒子高為c,只考慮如圖所示,在長方形的右邊兩個角上各剪去一個大小相同的正方形,左上角剪去一個長方形的情況,則這個無蓋長方體盒子的容積是______

查看答案和解析>>

同步練習(xí)冊答案