如圖,在平面直角坐標(biāo)系中,四邊形OABC是正方形,B點(diǎn)的坐標(biāo)為(-2,2),E是線段BC上一點(diǎn),且∠AEB=60°,沿AE折疊后B點(diǎn)落在點(diǎn)F處,那么點(diǎn)F的坐標(biāo)是   
【答案】分析:求點(diǎn)F坐標(biāo),就是求點(diǎn)F到x軸,y軸的距離,可作出點(diǎn)F到x軸,y軸的距離,根據(jù)翻折的性質(zhì)得到AF的長度,得到∠BAF的大小,求出∠OAF的大小,在直角三角形中利用勾股定理可得答案.
解答:解:過點(diǎn)F作FD⊥OA,垂足為D,
∵B點(diǎn)的坐標(biāo)為(-2,2),
∴AB=2,AO=2,
∵∠AEB=60°,
∴∠BAE=90°-60°=30°,
∵AE為折痕,
∴AF=AB=2,∠FAE=∠BAE=30°,
∴∠OAF=90°-30°-30°=30°,
Rt△AFD中,F(xiàn)D=AF=×2=1,
AD===
∴OD=OA-AD=2-,
∴點(diǎn)F的坐標(biāo)是(-1,2-).
故答案為:(-1,2-).
點(diǎn)評(píng):本題考查了翻折問題、坐標(biāo)與圖形的性質(zhì)及正方形的性質(zhì);翻折問題一定要找準(zhǔn)相等的相等及相等的角,作出輔助線后利用勾股定理求解是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案