如圖,BC為半圓的直徑,A、D為半圓上兩點,若A為半圓弧BC的中點,則∠ADC的度數(shù)等于    度.
【答案】分析:連接AC,根據(jù)圓周角定理,由BC為半圓的直徑,可證∠BAC=90°,又A為半圓弧BC的中點,可證AB=AC,即可得∠B=∠ACB=45°,根據(jù)圓內接四邊形的對角互補得∠ADC=180°-45°=135°.
解答:解:連接AC,
∵BC為半圓的直徑,
∴∠BAC=90°,
又A為半圓弧BC的中點,
∴AB=AC,
∴∠B=∠ACB=45°,
∴∠ADC=180°-45°=135°.
點評:注意此題中的輔助線,利用直徑所對的圓周角是直角是在圓中構造直角三角形常用的方法.又根據(jù)等弧所對的圓周角相等得到一個等腰直角三角形,然后根據(jù)圓內接四邊形的性質就可求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖是某學校田徑體育場一部分的示意圖,第一條跑道每圈為400米,跑道分直道和彎道,直道為長相等的平行線段,彎道為同心的半圓型,彎道與直道相連接,已知直精英家教網道BC的長86.96米,跑道的寬為l米.(π=3.14,結果精確到0.01)
(1)求第一條跑道的彎道部分
AB
的半徑.
(2)求一圈中第二條跑道比第一條跑道長多少米?
(3)若進行200米比賽,求第六道的起點F與圓心O的連線FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經作半圓,面積分別記為S1、S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)如圖所示,一內壁光滑的細管彎成半徑為R=0.4 m的半圓形軌道CD,豎直放置,其內徑略大于小球的直徑,水平軌道與豎直半圓軌道在C點連接完好.置于水平軌道上的彈簧左端與豎直墻壁相連,B處為彈簧的自然狀態(tài).將一個質量為m=0.8 kg的小球放在彈簧的右側后,用力向左側推小球而壓縮彈簧至A處,然后將小球由靜止釋放,小球運動到C處后對軌道的壓力為F1=58 N.水平軌道以B處為界,左側AB段長為x=0.3 m,與小球的動摩擦因數(shù)為μ=0.5,右側BC段光滑.g=10 m/s2,求:

(1)彈簧在壓縮時所儲存的彈性勢能.
(2)小球運動到軌道最高處D點時對軌道的壓力.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖北省恩施州咸豐縣中考數(shù)學二模試卷(解析版) 題型:選擇題

如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經作半圓,面積分別記為S1、S2,則S1+S2的值等于( )

A.8πB
B.16π
C.25π
D.12.5π

查看答案和解析>>

科目:初中數(shù)學 來源:2002年山東省濰坊市中考數(shù)學試卷(解析版) 題型:解答題

(2002•濰坊)如圖是某學校田徑體育場一部分的示意圖,第一條跑道每圈為400米,跑道分直道和彎道,直道為長相等的平行線段,彎道為同心的半圓型,彎道與直道相連接,已知直道BC的長86.96米,跑道的寬為l米.(π=3.14,結果精確到0.01)
(1)求第一條跑道的彎道部分的半徑.
(2)求一圈中第二條跑道比第一條跑道長多少米?
(3)若進行200米比賽,求第六道的起點F與圓心O的連線FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

同步練習冊答案