【題目】如圖,在平面直角坐標(biāo)系xOy中,平行四邊形OABC的頂點(diǎn)A,B的坐標(biāo)分別為(6,0),(7,3),將平行四邊形OABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當(dāng)點(diǎn)C′落在BC的延長線上時(shí),線段OA′交BC于點(diǎn)E,則線段C′E的長度為__

【答案】5

【解析】試題解析:∵OC=OC′CC′y軸,A,B的坐標(biāo)分別為(6,0),(7,3),
∴點(diǎn)Cy軸的距離:7-6=1.
O′C=O′C′=1,O點(diǎn)到CC′的距離是3,
OC=OC′=,SOCC′=×2×3=3.
如圖,過點(diǎn)CCDOC′于點(diǎn)D

OCCD=3,
CD=,sinCOC′=,tanCOC′=
∵∠COC′+COE=AOE+COE,
∴∠COC′=AOE,
tanAOE=tanCOC′=
自點(diǎn)Ex軸引垂線,交x軸于點(diǎn)F.則EF=3.
tanAOE=,
OF==4,
OF=O′E=4,
C′E=O′E+O′C′=4+1=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點(diǎn)M,N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證BM+DN=MN

(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM,DNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM,DNMN之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是(

A.矩形B.三角形C.平行四邊形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-2x-3,點(diǎn)P在該函數(shù)的圖象上,點(diǎn)P到x軸、y軸的距離分別為d1、d2.設(shè)d=d1+d2,下列結(jié)論中: ①d沒有最大值; ②d沒有最小值; ③ -1<x<3時(shí),d 隨x的增大而增大; ④滿足d=5的點(diǎn)P有四個(gè).其中正確結(jié)論的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八邊形的外角和是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+6x+5圖象的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知代數(shù)式3x2﹣6x的值為9,則代數(shù)式x2﹣2x+8的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O直徑,C、D為O上不同于A、B的兩點(diǎn),ABD=2BAC,連接CD.過點(diǎn)C作CEDB,垂足為E,直線AB與CE相交于F點(diǎn).

(1)求證:CFO的切線;

(2)當(dāng)BF=5,時(shí)求BD的長.

查看答案和解析>>

同步練習(xí)冊答案