【題目】如圖,在平面直角坐標(biāo)系xOy中,平行四邊形OABC的頂點(diǎn)A,B的坐標(biāo)分別為(6,0),(7,3),將平行四邊形OABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當(dāng)點(diǎn)C′落在BC的延長線上時(shí),線段OA′交BC于點(diǎn)E,則線段C′E的長度為__.
【答案】5.
【解析】試題解析:∵OC=OC′,CC′⊥y軸,A,B的坐標(biāo)分別為(6,0),(7,3),
∴點(diǎn)C到y軸的距離:7-6=1.
∴O′C=O′C′=1,O點(diǎn)到CC′的距離是3,
∴OC=OC′=,S△OCC′=×2×3=3.
如圖,過點(diǎn)C作CD⊥OC′于點(diǎn)D.
則OC′CD=3,
∴CD=,sin∠COC′=,tan∠COC′=.
∵∠COC′+∠COE=∠AOE+∠COE,
∴∠COC′=∠AOE,
∴tan∠AOE=tan∠COC′=.
自點(diǎn)E向x軸引垂線,交x軸于點(diǎn)F.則EF=3.
∵tan∠AOE=,
∴OF==4,
∵OF=O′E=4,
∴C′E=O′E+O′C′=4+1=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點(diǎn)M,N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證BM+DN=MN.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM,DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2x-3,點(diǎn)P在該函數(shù)的圖象上,點(diǎn)P到x軸、y軸的距離分別為d1、d2.設(shè)d=d1+d2,下列結(jié)論中: ①d沒有最大值; ②d沒有最小值; ③ -1<x<3時(shí),d 隨x的增大而增大; ④滿足d=5的點(diǎn)P有四個(gè).其中正確結(jié)論的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD.過點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)當(dāng)BF=5,時(shí),求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com