如圖,圓O是△ABC的外接圓,AB=AC,過點(diǎn)A作AP∥BC,交BO的延長(zhǎng)線于點(diǎn)P.
(1)求證:AP是圓O的切線;
(2)若圓O的半徑R=5,BC=8,求線段AP的長(zhǎng).

(1)證明:過點(diǎn)A作AE⊥BC,交BC于點(diǎn)E,
∵AB=AC,
∴AE平分BC,
∴點(diǎn)O在AE上.
又∵AP∥BC,
∴AE⊥AP,
∴AP為圓O的切線.

(2)解:∵BE=BC=4,
,
又∵∠AOP=∠BOE,
∴△OBE∽△OPA,



分析:(1)由題意可知AE⊥BC且BE=CE,得出AE經(jīng)過圓心O,只要證明AP⊥AE即可;
(2)可通過△APO∽△EBO及勾股定理求出AP的長(zhǎng).
點(diǎn)評(píng):本題考查了切線的判定,先要證明AE經(jīng)過圓心,再證明垂直即可.求AP的長(zhǎng),注意與已知線段相關(guān)的三角形聯(lián)系,找準(zhǔn)相似三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓O是△ABC的外接圓,AB=AC,過點(diǎn)A作AP∥BC,交BO的延長(zhǎng)線于點(diǎn)P.
(1)求證:AP是圓O的切線;
(2)若圓O的半徑R=5,BC=8,求線段AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,圓O是△ABC的外接圓,圓心O在這個(gè)三角形的高CD上,E、F分別是邊AC和BC的中點(diǎn),求證:四邊形CEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,圓O是△ABC的外接圓,連接OB、OC,圓O的半徑R=10,sinA=
35
,則弦BC的長(zhǎng)為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,圓O是△ABC的內(nèi)切圓,與△ABC各邊的切點(diǎn)分別為D、E、F,若圖中3個(gè)陰影三角形的面積之和為4,內(nèi)切圓半徑為1,則△ABC的周長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《圓》中考題集(37):24.2 點(diǎn)、直線和圓的位置關(guān)系(解析版) 題型:解答題

已知:如圖,圓O是△ABC的外接圓,圓心O在這個(gè)三角形的高CD上,E、F分別是邊AC和BC的中點(diǎn),求證:四邊形CEDF是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案