【題目】中,如果一條直角邊和斜邊的長(zhǎng)度都縮小至原來(lái)的,那么銳角的各個(gè)三角函數(shù)值(

A. 都縮小 B. 都不變 C. 都擴(kuò)大 D. 無(wú)法確定

【答案】B

【解析】

RtABC如果一條直角邊和斜邊的長(zhǎng)度都縮小至原來(lái)的,根據(jù)勾股定理可知,另一條直角邊也縮小至原來(lái)的再根據(jù)三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似,可知這兩個(gè)直角三角形相似,由相似三角形的對(duì)應(yīng)角相等可知銳角A的大小不變,所以銳角A的各個(gè)三角函數(shù)值也都不變

RtABC,設(shè)∠C=90°,BC=a,AC=bAB=cb=

如果在△ABC,BC′=aAB′=c,即一條直角邊a和斜邊c的長(zhǎng)度都縮小至原來(lái)的

那么由勾股定理可知AC′==b

aa=bb=cc,∴△ABC∽△ABC,∴∠A′=A,∴銳角A的各個(gè)三角函數(shù)值都不變

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線(xiàn);

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線(xiàn)與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線(xiàn);
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線(xiàn);

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線(xiàn)y=ax2+ax+b(a≠0)與直線(xiàn)y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線(xiàn)的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線(xiàn)與拋物線(xiàn)的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線(xiàn)y=﹣2x與拋物線(xiàn)在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線(xiàn)段GH沿y軸向上平移t個(gè)單位(t>0),若線(xiàn)段GH與拋物線(xiàn)有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形 ABCD ,A(﹣1,0)、B(0,﹣2),頂點(diǎn) C、D 在雙曲線(xiàn) y=x>0), AD y 軸于點(diǎn) E,若點(diǎn) E 恰好是 AD 的中點(diǎn), k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線(xiàn)段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)BDABBD,EDBD,連接AC、EC.已知AB=2,DE=1,BD=8,設(shè)CD=x

1)用含x的代數(shù)式表示AC+CE的長(zhǎng);

2)請(qǐng)問(wèn)點(diǎn)C滿(mǎn)足什么條件時(shí),AC+CE的值最;

3)根據(jù)(2)中的規(guī)律和結(jié)論,請(qǐng)構(gòu)圖求出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,在中,過(guò),的垂線(xiàn)垂足為,,過(guò),的垂線(xiàn),垂足為,,不垂直).

(1)試說(shuō)明:四邊形;

(2)四邊形是不是位似圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在東西方向的海岸線(xiàn)MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B 兩港口沿AP,BP的路線(xiàn)去小島捕魚(yú)作業(yè).已知小島PA港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線(xiàn)MN的距離為30海里.

(1)AP,BP的長(zhǎng)(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);

(2)甲、乙兩船分別從A,B兩港口同時(shí)出發(fā)去小島P捕魚(yú)作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)x軸交于E-2,0),與y軸交于點(diǎn)Ax軸交于B(2,0),與y軸交于點(diǎn)D0,-4).它們的圖象如圖所示,請(qǐng)依據(jù)圖象回答以下問(wèn)題:

1a  

2)確定的函數(shù)關(guān)系式

3)求ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,圓心為Pxy)的動(dòng)圓經(jīng)過(guò)點(diǎn)A(2,8),且與x軸相切于點(diǎn)B.

(1)當(dāng)x>0,y=5時(shí),求x的值;

(2)當(dāng)x = 6時(shí),求⊙P的半徑;

(3)y關(guān)于x的函數(shù)表達(dá)式,請(qǐng)判斷此函數(shù)圖象的形狀,并在圖②中畫(huà)出此函數(shù)的圖象(不必列表,畫(huà)草圖即可).

圖① 圖②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個(gè)結(jié)論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒(méi)有實(shí)數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個(gè)數(shù)是(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案