【題目】閱讀下面材料并解決問題
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小而解決問題的策略般要進(jìn)行一定的轉(zhuǎn)化,其中“求差法”就是常用的方法之一,所謂“求差法”:就是通過求差、變形,并利用差的符號來確定它們的大小,即要比較代數(shù)式的大小,只要求出它們的差,若,則;若,則.若,則,
請你用“求差法”解決以下問題
(1)若P=m2-2m-3,Q=m2-2m-1,比較的大小關(guān)系;
(2)制作某產(chǎn)品有兩種用料方案方案一:用3塊型鋼板,用7塊型鋼板;方案二:用2塊型鋼板,用8塊型鋼板;型鋼板的面積比型鋼板的面積大,設(shè)每塊型鋼板的面積為,每塊B型鋼板的面積為,從省料角度考慮,應(yīng)選哪種方案?
(3)試比較圖1和圖2中兩個矩形周長、的大小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標(biāo)為(6,n)。線段OA=5,E為x軸上一點,且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,E是AC邊上一點,EH⊥AB,垂足為H,∠1=∠2.
(1)試說明DF∥AC;
(2)若∠A=38°,∠BCD=45°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某商場地下停車場有5個出入口,每天早晨7點開始對外停車且此時車位空置率為80%,在每個出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個進(jìn)口和3個出口,8小時車庫恰好停滿;如果開放3個進(jìn)口和2個出口,2小時車庫恰好停滿2019年元旦節(jié)期間,由于商場人數(shù)增多,早晨7點時的車位空置率變?yōu)?/span>60%,又因為車庫改造,只能開放2個進(jìn)口和1個出口,則從早晨7點開始經(jīng)過_____小時車庫恰好停滿.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標(biāo)為(n,6),點C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8cm,BC=6cm.動點P、Q分別從點A、C以2cm/s的速度同時出發(fā).動點P沿AB向終點B運動,動點Q沿CD向終點D運動,連結(jié)PQ交對角線AC于點O.設(shè)點P的運動時間為t(s).
(1)求OC的長.
(2)當(dāng)四邊形APQD是矩形時,直接寫出t的值.
(3)當(dāng)四邊形APCQ是菱形時,求t的值.
(4)當(dāng)△APO是等腰三角形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M、N分別是正方形ABCD的邊CD、CB上的動點,滿足DM=CN,AM與DN相交于點E,連接CE,若正方形的邊長為2,則線段CE的最小值是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com