【題目】定義:如果一個三角形中有兩個內角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.
(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A= 度;
(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分線,
①求證:△BDC是“近直角三角形”;
②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.
(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.
【答案】(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.
【解析】
(1)∠B不可能是α或β,當∠A=α時,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;
(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;
②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.
(3)①如圖2所示,當∠ABD=∠DBC=β時,設BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;
②如圖3所示,當∠ABD=∠C=β時,AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.
解:(1)∠B不可能是α或β,
當∠A=α時,∠C=β=50°,α+2β=90°,不成立;
故∠A=β,∠C=α,α+2β=90°,則β=20°,
故答案為20;
(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,
則α+2β=90°,故△BDC是“近直角三角形”;
②存在,理由:
在邊AC上是否存在點E(異于點D),使得△BCE是“近直角三角形”,
AB=3,AC=4,則BC=5,
則∠ABE=∠C,則△ABC∽△AEB,
即,即,解得:AE=,
則CE=4﹣=;
(3)①如圖2所示,當∠ABD=∠DBC=β時,
則AE⊥BF,則AF=FE=3,則AE=6,
AB=BE=5,
過點A作AH⊥BC于點H,
設BH=x,則HE=5﹣x,
則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;
cos∠ABE===cos2β,則tan2β=,
則tanα=;
②如圖3所示,當∠ABD=∠C=β時,
過點A作AH⊥BE交BE于點H,交BD于點G,則點G是圓的圓心(BE的中垂線與直徑的交點),
∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,
∵DE⊥BC,AH⊥BC,
∴ED∥AH,則AF∶EF=AG∶GE=2∶3,
則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,
在△BGH中,BH==2k,
在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,
由勾股定理得:25=8k2+16k2,解得:k=;
在△ABD中,AB=5,BD=6k=,
則cos∠ABD=cosβ===cosC,
則tanC=;
綜上,tan∠C的值為或.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結論正確的是( 。
A.當x<2時,y隨x增大而增大B.a-b+c<0
C.拋物線過點(-4,0)D.4a+b=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠BAD=∠BDC=90°,AB=AD,∠DCB=60°,CD=8.
(1)若P是BD上一點,且PA=CD,求∠PAB的度數(shù).
(2)①將圖1中的△ABD繞點B順時針旋轉30°,點D落在邊BC上的E處,AE交BD于點O,連接DE,如圖2,求證:DE2=DODB;
②將圖1中△ABD繞點B旋轉α得到△A'BD'(A與A',D與D'是對應點),若CD'=CD,則cosα的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點P作PD⊥AC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設點P的運動時間為t秒.
(1)用含t的代數(shù)式表示線段DC的長;
(2)當點Q與點C重合時,求t的值;
(3)設△PDQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關系式;
(4)當線段PQ的垂直平分線經過△ABC一邊中點時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA與⊙O相切于點A,AB是⊙O的直徑,在⊙O上存在一點C滿足PA=PC,連結PB、AC相交于點F,且∠APB=3∠BPC,則=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明準備進行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段圍成一個正方形.
(1)要使這兩個正方形的面積之和等于,小明該怎么剪?
(2)小剛對小明說:“這兩個正方形的面積之和不可能等于.”小剛的說法對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地農產品專賣店收購了一種非常受歡迎的土特產,該店以元/千克收購了這種土特產千克,若立即銷往外地,每千克可以獲利元.根據(jù)市場調查發(fā)現(xiàn),該種土特產的銷售單價每天上漲元/千克,為了獲得更大利潤,該店決定先貯藏一段時間后再出售.根據(jù)以往經驗,這批土特產的貯藏時間不宜超過天,在貯藏過程中平均每天損耗千克.
(1)若商家將這批土特產貯藏天后一次性出售,請完成下列表格:
每千克土特產售價(單位:元) | 可供出售的土特產質量(單位:克) | |
現(xiàn)在出售 |
| |
天后出售 |
|
|
(2)將這批土特產貯藏多少天后一次性出售最終可獲得總利潤元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質地、顏色等其它方面完全相同,若背面朝上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面朝上方在桌面上,甲從中隨機抽取一張卡片,記該卡片上的數(shù)字為,然后放回洗勻,背面朝上方在桌面上,再由乙從中隨機抽取一張卡片,記該卡片上的數(shù)字為,組成一數(shù)對.
(1)請寫出.所有可能出現(xiàn)的結果;
(2)甲、乙兩人玩游戲,規(guī)則如下:按上述要求,兩人各抽依次卡片,卡片上述資質和為奇數(shù)則甲贏,數(shù)字之和為偶數(shù)則乙贏,你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結論有________(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com