探究:證明:∵根據(jù)旋轉(zhuǎn)的性質(zhì)得:△EBC≌△FDC,
∴CE=CF,DF=BE,
∵CG平分∠ECF,
∴∠ECG=∠FCG,
在△ECG和△FCG中
∴△ECG≌△FCG(SAS),
∴EG=GF,
∵GF=DG+DF=DG+BE,
∴EG=BE+GD;
應(yīng)用:
解:如圖3,過C作CH⊥AD于H,旋轉(zhuǎn)△BCE到△CHM,
則∠A=∠B=∠CHA=90°,
∵AB=BC,
∴四邊形ABCH是正方形,
∵∠DCE=45°,AH=BC,
∴∠DCH+∠ECB=90°-45°=45°,
∵由已知證明知:△EBC≌△MHC,
∴∠ECB=∠MCH,
∴∠DCH+∠MCH=45°,
∴CD平分∠ECM,
∴由探究證明知:DE=BE+DH,
在Rt△AED中,DE=10,AD=6,由勾股定理得:AE=8,
設(shè)BE=x,則BC=AB=x+8=AH,
即x+8=6+10-x,
x=4,
BE=4,
AB=4+8=12,BC=AB=12,
∴梯形ABCD的面積是
×(6+12)×12=108.
分析:探究:求出CE=CF,DF=BE,∠ECG=∠FCG,證△ECG≌△FCG,推出EG=GF即可;
應(yīng)用:過C作CH⊥AD于H,旋轉(zhuǎn)△BCE到△CHM,推出四邊形ABCH是正方形,CD平分∠ECM,由探究證明知:DE=BE+DH,
在Rt△AED中,DE=10,AD=6,由勾股定理求出AE=8,設(shè)BE=x,根據(jù)BC=AB=x+8=AH得出x+8=6+10-x,求出x=4即可.
點評:本題考查了正方形性質(zhì),全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理的應(yīng)用,主要考查學(xué)生綜合運用性質(zhì)進行推理的能力.