如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=
mx
(m≠0)
的圖象相交于A、B兩點.
(1)求出反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出:當x為何值時,一次函數(shù)值大于反比例函數(shù)值.
分析:(1)由于A點坐標為(2,
1
2
)和B點坐標為(-1,-1),然后利用待定系數(shù)法求兩函數(shù)的解析式;
(2)觀察函數(shù)圖象得到當-1<x<0或x>2時,一次函數(shù)的圖象都在反比例函數(shù)圖象上方,即一次函數(shù)值大于反比例函數(shù)值.
解答:解:(1)把A(2,
1
2
)和B(-1,-1)代入y=kx+b得
2k+b=
1
2
-k+b=-1
,解得
k=
1
2
b=-
1
2
,
所以一次函數(shù)的解析式為y=
1
2
x-
1
2

把B(-1,-1)代入y=
m
x
得m=-1×(-1)=1,
所以反比例函數(shù)的解析式為y=
1
x
;
(2)當-1<x<0或x>2時,一次函數(shù)值大于反比例函數(shù)值.
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)的交點坐標滿足兩函數(shù)的解析式;待定系數(shù)法是求函數(shù)解析式常用的方法.也考查了觀察函數(shù)圖象的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案