如圖,直角坐標系中,⊙O和⊙C的圓心坐標分別是O(0,0),C(5,0),點A(2,0)是⊙O上的點,將⊙C繞點A按逆時針方向旋轉(zhuǎn)360°,在這個過程中,⊙O和⊙C共相切    次.
【答案】分析:先求出⊙C繞點A按逆時針方向旋轉(zhuǎn)360°的圓心距的范圍,再根據(jù)兩圓位置關(guān)系與數(shù)量關(guān)系間的聯(lián)系即可求解.
解答:解:將⊙C繞點A按逆時針方向旋轉(zhuǎn)360°,在這個過程中,⊙O和⊙C的圓心距的范圍為:3-2≤圓心距≤5,即1≤圓心距≤5
根據(jù)圖形,得R=2,r=1,
則R+r=3,R-r=1,
則在這個過程中,⊙O和⊙C外切2次,內(nèi)切1次,共相切3次.
故答案為:3.
點評:考查了圓與圓的位置關(guān)系,坐標與圖形性質(zhì),旋轉(zhuǎn)的性質(zhì).解題的關(guān)鍵是得到⊙O和⊙C在旋轉(zhuǎn)過程中圓心距的范圍.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,A點坐標為(2,-1),則△ABC的面積為
 
平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直角坐標系中,已知點A(3,0),B(t,0)(0<t<
32
),以AB為邊在x軸上方作正方形ABCD,點E是直線OC與正方形ABCD的外接圓除點C以外的另一個交點,連接AE與BC相交于點F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過O、F、A三點,試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對稱軸l與直線AF相交于點G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問在拋物線上是否存在點P,使該點關(guān)于直線AF的對稱點在x軸上精英家教網(wǎng)?若存在,請求出所有這樣的點;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在如圖平面直角坐標系中,△ABC三個頂點A、B、C的坐標分別為A(2,-1),B(1,-3),C(4,-4),
請解答下列問題:
(1)把△ABC向左平移4個單位,再向上平移3個單位,恰好得到△A1B1C1試寫出△A1B1C1三個頂點的坐標;
(2)在直角坐標系中畫出△A1B1C1
(3)求出線段AA1的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,C點坐標為(1,2),原來△ABC各個頂點縱坐標不變,橫坐標都增加2,所得的三角形面積是
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在如圖的直角坐標系中,將△ABC平移后得到△A′B′C′,它們的個頂點坐標如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)觀察表中各對應(yīng)點坐標的變化,并填空:△ABC向
平移
4
4
個單位長度,再向
平移
2
2
個單位長度可以得到△A′B′C′;
(2)在坐標系中畫出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

同步練習冊答案