如圖,△ABC中,以AB為直徑的⊙O交AC于點(diǎn)M,弦MN∥BC交AB于點(diǎn)E,且ME=1,AM=2,AE=

(1)求證:BC是⊙O的切線;

(2)求的長(zhǎng)。

 

【答案】

(1)見(jiàn)解析(2)

【解析】解:(1)證明:∵M(jìn)E=1,AM=2,AE=,∴。

∴△AEM是直角三角形,且∠AEM=900。

∵M(jìn)N∥BC,∴∠ABC=∠AEM=900。

又∵AB是⊙O的直徑,∴BC是⊙O的切線。

(2)如圖,連接ON,

∵∠AEM=900,∴AE⊥MN!郋N=ME=1。

設(shè)⊙O的半徑為x,則ON= x,OE=,

在Rt△OEN中,根據(jù)勾股定理,得:

 ,解得:。

!。

。

(1)根據(jù)已知,由勾股定理逆定理可知,△AEM是直角三角形,從而平行的性質(zhì)得到AB⊥BC,

因此得出結(jié)論。

(2)連接ON,求出ON和即可求出的長(zhǎng)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC中,以AB為直徑的⊙O交BC于點(diǎn)P,且P為BC中點(diǎn),PD⊥AC于點(diǎn)D.
(1)求證:PD是⊙O的切線;
(2)求證:AB=AC;
(3)若∠CAB=120°,BC=4,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•高淳縣二模)如圖,△ABC中,以AB為直徑的⊙O交AC于D,交BC于E,已知CD=AD.
(1)求證:AB=CB;
(2)過(guò)點(diǎn)D作出⊙O的切線;(要求:用尺規(guī)作圖,保留痕跡,不寫作法)
(3)設(shè)過(guò)D點(diǎn)⊙O的切線交BC于H,DH=
32
,tanC=3,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,以B為圓心,BC長(zhǎng)為半徑的⊙B交邊AB于D,AE⊥AB交CD的延長(zhǎng)線于E,并且AE=AC.
(1)證明AC是⊙B的切線;
(2)探究DE•DC與2AD•DB是否相等,并說(shuō)明理由;
(3)如果DE•DC=8,且BC=4,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•攀枝花)如圖,△ABC中,以BC上一點(diǎn)O為圓心,以O(shè)B為半徑的圓交AB于點(diǎn)M,交BC于點(diǎn)N,且BA•BM=BC•BN.
(1)求證:AC⊥BC;
(2)如果CM是⊙O的切線,N為OC的中點(diǎn),當(dāng)AC=4時(shí),求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,以BC為邊向外作△BCD,把△ABD繞著點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ECD的位置,A、C、E三點(diǎn)恰好在同一直線上.
(1)若AB=3,AC=2,試求出線段AE的長(zhǎng)度;
(2)若∠ADC=20°,求∠BDA的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案