【題目】為了了解某次運動會名運動員的年齡情況,從中抽查了名運動員的年齡,就這個問題而言,下列說法正確的是(

A. 名運動員是總體 B. 每名運動員是個體

C. 名運動員是抽取的一個樣本 D. 這種調查方式是抽樣調查

【答案】D

【解析】

總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體樣本、樣本容量,這四個概念時,首先找出考查的范圍,從中找出總體、個體,再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定岀樣本容量.

:A. 名運動員的年齡是主體,錯誤,

B. 每名運動員的年齡是個體,錯誤,

C. 從2000人中抽查名運動員的年齡是一個樣本,錯誤

D. 這種調查方式是抽樣調查,正確

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在菱形 ABCD 中,∠ABC60°M、N 分別是邊 BC,CD 上的兩個動點,∠MAN60°,AMAN 分別交 BD E、F 兩點.

1)如圖 1,求證:CMCNBC;

2)如圖 2,過點 E EGAN DC 延長線于點 G,求證:EGEA

3)如圖 3,若 AB1,∠AED45°,直接寫出 EF 的長.

4)如圖 3,若 AB1,直接寫出BEAE的最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,CPQ的面積為S.

①求S關于m的函數(shù)表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1C2關聯(lián).

(1)已知兩條拋物線①:y=x2+2x﹣1,:y=﹣x2+2x+1,判斷這兩條拋物線是否關聯(lián),并說明理由;

(2)拋物線C1:y=(x+1)2﹣2,動點P的坐標為(t,2),將拋物線C1繞點P(t,2)旋轉180°得到拋物線C2,若拋物線C2C1關聯(lián),求拋物線C2的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖某小船準備從處出發(fā),沿北偏東的方向航行,在規(guī)定的時間將一批物資運往處的貨船上,后考慮這條航線可能會因退潮而使小船擱淺,決定改變航線,從處出發(fā)沿正東方向航行海里到達處,再由處沿北偏東的方向航行到達處.

(1)小船由經(jīng)到達走了多少海里(結果精確到海里);

(2)為了按原定時間到達處的貨船上,小船提速,每小時增加海里,求小船原定的速度(結果精確到海里/時).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DE分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE=4BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為4EAB的中點,FAD上一點,且AF=AD,試判斷△EFC的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是二次函數(shù)的部分的對應值:

x

-1

0

1

2

3

y

m

-1

-2

-1

2

(1)求函數(shù)解析式;

(2)時,y的取值范圍是___________;

(3)當拋物線的頂點在直線的下方時,n的取值范圍是__________.

查看答案和解析>>

同步練習冊答案