精英家教網 > 初中數學 > 題目詳情
如圖,在矩形ABCD(AB<AD)中,將△ABE沿AE對折,使AB邊落在對角線AC上,點B的對應點為F,同時將△CEG沿EG對折,使CE邊落在EF所在直線上,點C的對應點為H.

(1)證明:AF∥HG(圖(1));
(2)如果點C的對應點H恰好落在邊AD上(圖(2)).判斷四邊形AECH的形狀,并說明理由.
(1)由軸對稱性質可得∠AFE=∠B=90°,∠H=∠BCD=90°,問題得證;(2)菱形

試題分析:(1)由軸對稱性質可得∠AFE=∠B=90°,∠H=∠BCD=90°,問題得證;
(2)根據平行線的性質可得∠AEB=∠DAE,再結合∠AEB=∠AEH可得∠DAE=∠AEH,即可證得AH=EH,由EC=EH可得AH=EC,再結合AH∥EC,AC⊥EH即可證得結論.
(1)由對折(軸對稱)性質可得:∠AFE=∠B=90°,∠H=∠BCD="90°"
∴∠AFH=∠AFE=∠H
∴AF∥HG
(2)四邊形 AECH是菱形.理由如下:
∵AD∥BC
∴∠AEB=∠DAE
∵∠AEB=∠AEH
∴∠DAE=∠AEH
∴AH=EH
∵EC=EH                 
∴AH="EC"
∵AH∥EC,AC⊥EH 
∴四邊形 AECH是菱形.
點評:特殊四邊形的判定和性質是初中數學的重點,貫穿于整個初中數學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,防洪大堤的橫斷面是梯形ABCD,其中AD∥BC,坡角α=600,汛期來臨前對其進行了加固,改造后的背水面坡角β=450,若原坡長AB=20m,求改造后的坡長AE(結果保留根號)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知等腰梯形中,//,對角線、相交于點,,則=        .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

四邊形ABCD對角線交點是O,下列條件中,不能判定四邊形ABCD是平行四邊形的是(     )     
A.AD∥BC,AD=BCB.AB=DC,AD=BC
C.AB∥DC,AD=BCD.OA=OC,OD=OB

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,菱形ABCD和菱形ECGF的邊長分別為3和4,∠A=120°,則圖中陰影部分的面積是
A.B.C.D.3

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

在□中,,為垂足.若,則(  。
  
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,ÐADB=ÐCBD=90°,BE//CD交AD于E , 且EA=EB.若AB=,DB="4," 求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在菱形ABCD中,DEAB,垂足為E,DE=8cm,,則菱形ABCD的面積是__________

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在正方形ABCD中,對角線AC,BD交于點,折疊正方形ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展平后,折痕DE分別交AB,AC于點E,G,連接GF,下列結論:①AE=AG;②tan∠AGE=2;③;④四邊形ABFG為等腰梯形;⑤BE=2OG,則其中正確的結論個數為(  )。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案