如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于點D,DE⊥AB于點E,且AB=6cm,則△DEB的周長為( 。
分析:根據(jù)角平分線上的點到角的兩邊的距離相等可得CD=DE,利用“HL”證明△ACD和△AED全等,根據(jù)全等三角形對應邊相等可得AC=AE,然后求出△DEB的周長=AB.
解答:解:∵AD平分∠CAB,∠C=90°,DE⊥AB,
∴CD=DE,
在△ACD和△AED中,
AD=AD
CD=DE
,
∴△ACD≌△AED(HL),
∴AC=AE,
∴△DEB的周長=BD+DE+BE,
=BD+CD+BE,
=BC+BE,
=AC+BE,
=AE+BE,
=AB,
∵AB=6cm,
∴△DEB的周長為6cm.
故選B.
點評:本題考查了角平分線上的點到角的兩邊的距離相等的性質,等腰直角三角形的性質,熟記性質并準確識圖是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案