【題目】如圖,在矩形ABCD中,點E在邊AD上,將此矩形沿CE折疊,點D落在點F處,連接BFB、FE三點恰好在一直線上.

(1)求證:△BEC為等腰三角形;(2)若AB=2,∠ABE=45°,求矩形ABCD的面積.

【答案】(1)證明見解析;(2)4.

【解析】

試題(1)由矩形ABCD可得∠DEC=∠BCE,由折疊知∠DEC=∠FEC,從而可得 ∠FEC=∠BCE,從而可推得結論;

(2)利用勾股定理可求得BE的長,由(1)可知BC=BE,利用矩形的面積公式即可得.

試題解析:(1)∵四邊形ABCD是矩形,∴ADBC,∴∠DEC=∠BCE,

由折疊知DEC=∠FEC,∴∠FEC=∠BCE,

又∵BF、E三點在一直線上,∴∠BEC=∠BCE,

BCBE,即△BEC為等腰三角形;

(2)∵四邊形ABCD是矩形,∴∠A=90°,

又∵AB=2,∠ABE=45°,∴BE2,

又∵BCBE,∴BC2

∴矩形ABCD的面積為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AB的垂直平分線分別交ABBCD,E,AC的垂直平分線分別交ACBCF,G

(1)若△AEG的周長為10,求線段BC的長.

(2)BAC=128°,EAG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC, C=90°,DEAB的垂直平分線,D為垂足,EC=DE,則∠B 度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1:在四邊形ABCD中,ABADBAD120°,BADC90°EF分別是BC、CD上的點.且∠EAF60°.探究圖中線段BE、EFFD之間的數(shù)量關系.

小王同學探究此問題的方法是,延長FD到點G,使DGBE.連結AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結論,他的結論應是   ;

探索延伸:

如圖2,若在四邊形ABCD中,ABAD,BD180°EF分別是BC、CD上的點,且∠EAFBAD,上述結論是否仍然成立,并說明理由;

實際應用:

如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達EF處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處.

(1)求∠A的度數(shù);

(2)若,求△AEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】騎共享單車已成為人們喜愛的一種綠色出行方式.已知A、B、C三家公司的共享單車都是按騎車時間收費,標準如下:

公司

單價(元/半小時)

充值優(yōu)惠

A

m

充20元送5元,即:充20元實得25元

B

m-0.2

C

1

充20元送20元,即:充20元實得40元

(注:使用這三家公司的共享單車,不足半小時均按半小時計費.用戶的賬戶余額長期有效,但不可提現(xiàn).)

4月初,李明注冊成了A公司的用戶,張紅注冊成了B公司的用戶,并且兩人在各自賬戶上分別充值20元.一個月下來,李明、張紅兩人使用單車的次數(shù)恰好相同,且每次都在半小時以內(nèi),結果到月底李明、張紅的賬戶余額分別顯示為5元、8元.

(1)求m的值;

(2)5月份,C公司在原標準的基礎上又推出新優(yōu)惠:每月的月初給用戶送出5張免費使用券(1

次用車只能使用1張券).如果王磊每月使用單車的次數(shù)相同,且在30次以內(nèi),每次用車都不超過

半小時. 若要在這三家公司中選擇一家并充值20元,僅從資費角度考慮,請你幫他作出選擇,并說

明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A( ,1)關于x軸的對稱點為點A1 , 將OA繞原點O逆時針方向旋轉90°到OA2 , 用扇形OA1A2圍成一個圓錐,則該圓錐的底面圓的半徑為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將油箱注滿k升油后,轎車行駛的總路程S(單位:千米)與平均耗油量a(單位:升/千米)之間是反比例函數(shù)關系S= (k是常數(shù),k≠0).已知某轎車油箱注滿油后,以平均耗油量為每千米耗油0.1升的速度行駛,可行駛760千米,當平均耗油量為0.08升/千米時,該轎車可以行駛千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中有三點A(﹣2,1)、B(3,1)、C(2,3).請回答如下問題:

(1)在坐標系內(nèi)描出點A、B、C的位置,并求ABC的面積

(2)在平面直角坐標系中畫出ABC,使它與ABC關于x軸對稱,并寫出ABC三頂點的坐標.

查看答案和解析>>

同步練習冊答案