【題目】某花卉基地出售文竹和發(fā)財樹兩種盆栽,其單價為:文竹盆栽12/盆,發(fā)財樹盆栽15/盆。如果同一客戶所購文竹盆栽的數(shù)量大于800盆,那么每盆文竹可降價2元.某花卉銷售店向花卉基地采購文竹400盆~900盆,發(fā)財樹若干盆,此銷售店本次用于采購文竹和發(fā)財樹恰好花去12000元.然后再以文竹15元,發(fā)財樹20元的單價實賣出.若設采購文竹x盆,發(fā)財樹y盆,毛利潤為W元.

1)當時,yx的數(shù)量關系是_______,Wx的函數(shù)解析式是_________;

時,yx的數(shù)量關系是___________Wx的函數(shù)解析式是________;

2)此花卉銷售店應如何采購這兩種盆栽才能使獲得毛利潤最大?

【答案】(1)當時,(或填),;當時, (或填),;(2)采購文竹900盆,發(fā)財樹200盆,毛利潤最大為5500

【解析】

1)根據(jù)題意,可直接列出關系式;

2)根據(jù)題意,分情況進行分析,進而得出采購文竹900盆,發(fā)財樹200盆,毛利潤最大為5500元.

1)根據(jù)題意,可得

時,

(或填),

;

時,

(或填),

;

2)當時,

,W隨著x的增大而減小

∴當x400時,,W有最大值3600,

時,

,W隨著x的增大而增大

∴當x900時,,W有最大值5500,

綜上所述,采購文竹900盆,發(fā)財樹200盆,毛利潤最大為5500

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】王老師為學校新年聯(lián)歡會購買獎品,在某文具用品店購買明信片,每一張明信片的價格是8元,在結算時發(fā)現(xiàn),如果再多買5張,就可以享受到打九折的優(yōu)惠,總價格反而減少8元,為了能享受優(yōu)惠,王老師比原計劃多購買了5張明信片;

1)王老師實際購買多少張明信片?一共花了多少錢?

2)文具店開展元旦優(yōu)惠活動:從即日起,在一周內(nèi),憑購物小票,累計購物超過500元,超過部分可以享受八折的優(yōu)惠.王老師想了一想,又為學校購買了一定數(shù)量的筆記本,享受了八折優(yōu)惠,這樣,兩次一共節(jié)省了36元,王老師購買筆記本實際花了多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用火柴棒擺出一列正方形圖案,第①個圖案用了 4 根,第②個圖案用了 12 根,第③個圖案用了 24 按照這種方式擺下去,擺出第⑥個圖案用火柴棒的根數(shù)是(

A. 84 B. 81 C. 78 D. 76

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線 x軸于A,y軸于BC是線段AB的中點,連接OC,然后將直線OC繞點C逆時針旋轉(zhuǎn)30°x軸于點D,再過D點作直線DC1OC,AB與點C1,然后過C1點繼續(xù)作直線D1C1DC,x軸于點D1,并不斷重復以上步驟,OCD的面積為S1,DC1D1的面積為S2,依此類推,后面的三角形面積分別是S3,S4,那么S1=_____,S=S1+S2+S3+…+Snn無限大時,S的值無限接近于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點O順時針旋轉(zhuǎn)90°后得RtFOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點為直線上一點,過點作射線,使,將一直角三角板的直角頂點放在點處(),一邊在射線上,另一邊在直線的下方.

1)將圖1中的三角板繞點逆時針旋轉(zhuǎn)至圖2,使一邊的內(nèi)部,且恰好平分,求的度數(shù);

2)將圖1中的三角板繞點以每秒5的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第秒時,直線恰好平分銳角,求的值;

將圖1中的三角板繞點逆時針旋轉(zhuǎn)至圖3,使一邊的內(nèi)部,請?zhí)骄?/span>的值./span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線l∥BC,交直線CD于點F.將直線l向右平移,設平移距離BEt(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關于t的函數(shù)圖象如圖所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.

信息讀取

(1)梯形上底的長AB=   ;

(2)直角梯形ABCD的面積=   ;

圖象理解

(3)寫出圖中射線NQ表示的實際意義;

(4)當2<t<4時,求S關于t的函數(shù)關系式;

問題解決

(5)當t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=kx(k>0)與雙曲線交于A、B兩點,且點A的縱坐標為4,第一象限的雙曲線上有一點,過點PPQ//y軸交直線AB于點Q

1)直接寫出k的值及點B的坐標:

2)求線段PQ的長;

3)如果在直線y=kx上有一點M,且滿足BPM的面積等于12,求點M的坐標.

查看答案和解析>>

同步練習冊答案