【題目】如圖,OP∥QR∥ST,則下列各式中正確的是( 。
A.∠1+∠2+∠3=180°
B.∠1+∠2﹣∠3=90°
C.∠1﹣∠2+∠3=90°
D.∠2+∠3﹣∠1=180°
【答案】D
【解析】延長TS,由OP∥QR∥ST可知∠2=∠4,∠ESR=180°﹣∠3,再由三角形外角的性質(zhì)即可得出結(jié)論.延長TS,2·1·c·n·j·y ∵OP∥QR∥ST,
∴∠2=∠4,
∵∠3與∠ESR互補(bǔ),
∴∠ESR=180°﹣∠3,
∵∠4是△FSR的外角,
∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,
∴∠2+∠3﹣∠1=180°.
故選D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行線的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中,∠BAC=90°,AD是斜邊BC上的高,BE為∠ABC的角平分線交AC于E,交AD于F,F(xiàn)G∥BD,交AC于G,過E作EH⊥CD于H,連接FH,下列結(jié)論:①四邊形CHFG是平行四邊形,②AE=CG,③FE=FD,④四邊形AFHE是菱形,其中正確的是( )
A.①②③④ B.②③④ C.①③④ D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面網(wǎng)格中每個(gè)小正方形的邊長為1.
(1)線段CD是線段AB經(jīng)過怎樣的平移后得到的?
(2)線段AC是線段BD經(jīng)過怎樣的平移后得到的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在¨ABCD中,過點(diǎn)D作DE⊥AB與點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我國糧食生產(chǎn)首次實(shí)現(xiàn)了建國以來的“十連增”,全年糧食產(chǎn)量突破12000億斤.將1 200 000 000 000用科學(xué)記數(shù)法表示為( 。
A. 12×1011 B. 1.2×1011 C. 1.2×1012 D. 0.12×1013
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE, OP⊥CD,∠ABO=40°,則下列結(jié)論:①∠BO E=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論有(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高線,CE是中線,DC=BE,DG⊥CE于點(diǎn)G,求證:
(1)G是CE的中點(diǎn).
(2)∠B=2∠BCE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com