【題目】“腹有詩(shī)書氣自華,閱讀路伴我成長(zhǎng)”,我區(qū)某校學(xué)生會(huì)以“每天閱讀1小時(shí)”為問卷主題,對(duì)學(xué)生最喜愛的書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅末完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問題:

1)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;

2)該校共有學(xué)生1200名,請(qǐng)估算最喜愛科普類書籍的學(xué)生人數(shù).

【答案】1)見解析;(2320人.

【解析】

1)用文學(xué)的人數(shù)除以所占的百分比計(jì)算即可得總?cè)藬?shù),根據(jù)所占的百分比求出藝術(shù)和其它的人數(shù),然后補(bǔ)全折線圖即可;
2)用總?cè)藬?shù)乘以科普所占的百分比,計(jì)算即可得解.

解:(1)一共調(diào)查了45÷30%150(名),

藝術(shù)的人數(shù):150×20%30(名),

其它的人數(shù):150×10%15(名);

補(bǔ)全折線圖如圖:

2)最喜愛科普類書籍的學(xué)生人數(shù)為:×1200320(人),

答:估算最喜愛科普類書籍的學(xué)生有320人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為3的⊙O經(jīng)過(guò)等邊△ABO的頂點(diǎn)A、B,點(diǎn)P為半徑OB上的動(dòng)點(diǎn),連接AP,過(guò)點(diǎn)PPCAP交⊙O于點(diǎn)C,當(dāng)∠ACP=30°時(shí),AP的長(zhǎng)為( 。

A. 3B. 3C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,點(diǎn)P、Q分別在BC、CD上,∠PAQ=∠B

1)如圖1,若APBC,求證:APAQ;

2)如圖2,若點(diǎn)PBC上一點(diǎn),APAQ仍成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)M是射線BC上一點(diǎn),點(diǎn)NCD延長(zhǎng)線上一點(diǎn),且BMDN,直線BDMN交于點(diǎn)E

1)如圖1.當(dāng)點(diǎn)MBC上時(shí),為證明“BD2DEBM”這一結(jié)論,小敏添加了輔助線:過(guò)點(diǎn)MCD的平行線交BD于點(diǎn)P.請(qǐng)根據(jù)這一思路,幫助小敏完成接下去的證明過(guò)程.

2)如圖2,當(dāng)點(diǎn)MBC的延長(zhǎng)線上時(shí),則BD,DE,BM之間滿足的數(shù)量關(guān)系是   

3)在(2)的條件下,連接BNAD于點(diǎn)F,連接MFBD于點(diǎn)G,如圖3,若 CM2,則線段DG   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)OAB上,⊙O經(jīng)過(guò)A、D兩點(diǎn),交AC于點(diǎn)E,交AB于點(diǎn)F

1)求證:BC是⊙O的切線;

2)若⊙O的半徑是2cmE是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AF,BE是△ABC的中線,AFBE,垂足為點(diǎn)P,設(shè)BCaACb,ABc,則a2+b25c2,利用這一性質(zhì)計(jì)算.如圖2,在平行四邊形ABCD中,E,FG分別是AD,BC,CD的中點(diǎn),EBEG于點(diǎn)E,AD8,AB2,則AF__

查看答案和解析>>

同步練習(xí)冊(cè)答案