【題目】某商場將進(jìn)貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經(jīng)調(diào)查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規(guī)定此臺燈售價不得超過60元.
(1)為了實現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應(yīng)定為多少元?
(2)若商場要獲得最大利潤,則應(yīng)上漲多少元?
【答案】(1)50元;(2)漲20元.
【解析】
(1)設(shè)這種臺燈上漲了x元,臺燈將少售出10x,那么利潤為(40+x-30)(600-10x)=10000,解方程即可;
(2)根據(jù)銷售利潤=每個臺燈的利潤×銷售量,每個臺燈的利潤=售價-進(jìn)價,列出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可求最大利潤.
解:(1)設(shè)這種臺燈上漲了元,依題意得:
,
化簡得:,
解得:(不合題意,舍去)或,
售價:(元)
答:這種臺燈的售價應(yīng)定為50元.
(2)設(shè)臺燈上漲了元,利潤為元,依題意:
∴
對稱軸,在對稱軸的左側(cè)隨著的增大而增大,
∵單價在60元以內(nèi),
∴
∴當(dāng)時,元,
答:商場要獲得最大利潤,則應(yīng)上漲20元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點C,OA、OB分別交⊙O于點D、E、弧CD=弧CE
(1)求證:∠A=∠B.
(2)已知AC=2,OA=4,求陰影部分的面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的一元二次方程()有兩個不相等的實數(shù)根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”,例如,方程的兩個根是2和4,則方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則______;
(2)若()是“倍根方程”,求代數(shù)式的值;
(3)若方程()是倍根方程,且相異兩點,,都在拋物線上,求一元二次方程()的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于、兩點,與軸交于點,其頂點為點,點的坐標(biāo)為(0,-1),該拋物線與交于另一點,連接.
(1)求該拋物線的解析式,并用配方法把解析式化為的形式;
(2)若點在上,連接,求的面積;
(3)一動點從點出發(fā),以每秒1個單位的速度沿平行于軸方向向上運動,連接,,設(shè)運動時間為秒(>0),在點的運動過程中,當(dāng)為何值時,?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+4的圖象與反比例函數(shù)y2=的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求k.
(2)根據(jù)圖象直接寫出y1>y2時,x的取值范圍.
(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,求k的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結(jié)論①abc>0②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3③4a+2b+c<0④當(dāng)x>0時,y隨x的增大而減小正確的是( 。
A.①③④B.②④C.①②③D.②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC,點D為BC上一點,連接AD.
圖1 圖2
(1)若點E是AC上一點,且CE=BD,連接BE,BE與AD的交點為點P,在圖(1)中根據(jù)題意補全圖形,直接寫出∠APE的大;
(2)將AD繞點A逆時針旋轉(zhuǎn)120°,得到AF,連接BF交AC于點Q,在圖(2)中根據(jù)題意補全圖形,用等式表示線段AQ和CD的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com