精英家教網 > 初中數學 > 題目詳情

【題目】已知從甲地到乙地,某船順水航行需2小時,逆水航行需3小時,

1)設輪船在靜水中前進的速度是千米/時,水流的速度是y千米/時,則輪船共航行多少千米?

2)如果輪船在靜水中前進的速度是60千米/時,則水流的速度是多少千米/時?

【答案】(1) 輪船共航行(32-y)千米;(2) 水的流速為12千米/時.

【解析】

1)根據順水速度=靜水速度+水流速度,逆水速度=-靜水速度-水流速度,最后根據速度、時間和路程的關系列出方程求出y.

2)設水流的速度是x千米/時,,根據路程不變的等量關系列出一元一次方程即可.

解:(1)由題意得:順水速度=+y,逆水速度=-y

則:2+y+3-y=32-y

答:輪船共航行(32-y)千米.

2)設水流的速度是x千米/時,則有:

260+x=360-x

解得:x=12

答:水的流速為12千米/時.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數字3、4、5.從袋子中隨機取出一個小球,用小球上的數字作為十位的數字,然后放回;再取出一個小球,用小球上的數字作為個位上的數字,這樣組成一個兩位數,試問:按這種方法能組成哪些位數?十位上的數字與個位上的數字之和為9的兩位數的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題9分)據報道,國際剪刀石頭布協(xié)會提議將剪刀石頭布作為奧運會比賽項目.某校學生會想知道學生對這個提議的了解程度,隨機抽取部分學生進行了一次問卷調查,并根據收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調查的學生共有___名,扇形統(tǒng)計圖中基本了解部分所對應扇形的圓心角為___;請補全條形統(tǒng)計圖;

2)若該校共有學生900人,請根據上述調查結果,估計該校學生中對將剪刀石頭布作為奧運會比賽項目的提議達到了解基本了解程度的總人數;

3剪刀石頭布比賽時雙方每次任意出剪刀、石頭、這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD中,EBC邊上一點,FBA延長線上一點,AFCE,連接BD,EF,FG平分∠BFEBD于點G

1)求證:△ADF≌△CDE;

2)求證:DFDG;

3)如圖2,若GHEF于點H,且EHFH,設正方形ABCD的邊長為x,GHy,求yx之間的關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點D,E是位于AB兩側的半圓AB上的動點,射線DC切⊙O于點D.連接DE,AE,DEAB交于點PF是射線DC上一動點,連接FPFB,且∠AED45°

1)求證:CDAB

2)填空:

①若DFAP,當∠DAE_________時,四邊形ADFP是菱形;

②若BFDF,當∠DAE_________時,四邊形BFDP是正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【問題發(fā)現】

(1)如圖(1),四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為__________;

【拓展探究】

(2)如圖(2),在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;

【解決問題】

(3)如圖(3),在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市區(qū)自20141月起,居民生活用水開始實行階梯式計量水價,該階梯式計量水價分為三級(如下表所示):

月用水量(噸)

水價(元/噸)

第一級 20噸以下(含20噸)

16

第二級 20﹣30噸(含30噸)

24

第三級 30噸以上

32

例:某用戶的月用水量為32噸,按三級計量應繳水費為:

16×2024×1032×2624(元)

1)如果甲用戶的月用水量為12噸,則甲需繳的水費為 元;

2)如果乙用戶繳的水費為392元,則乙月用水量 噸;

3)如果丙用戶的月用水量為a噸,則丙用戶該月應繳水費多少元?(用含a的代數式表示,并化簡)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】幾何計算

1)如圖1,∠AOC,∠BOD都是直角,且∠AOB與∠AOD的度數比是211,求∠BOC的度數.

2)如圖2,點C分線段AB34ACBC,點D分線段為AB上一點且11BD3AD,若CD10cm,求AB的長.

查看答案和解析>>

同步練習冊答案