【題目】如圖,拋物線(xiàn)與y軸交于點(diǎn)A(0,- ),與x軸交于B、C兩點(diǎn),其對(duì)稱(chēng)軸與x軸交于點(diǎn)D,直線(xiàn)l∥AB且過(guò)點(diǎn)D.
(1)求AB所在直線(xiàn)的函數(shù)表達(dá)式;
(2)請(qǐng)你判斷△ABD的形狀并證明你的結(jié)論;
(3)點(diǎn)E在線(xiàn)段AD上運(yùn)動(dòng)且與點(diǎn)A、D不重合,點(diǎn)F在直線(xiàn)l上運(yùn)動(dòng),且∠BEF=60°,連接BF,求出△BEF面積的最小值.
【答案】(1)(2)△ABD是等邊三角形,(3)
【解析】試題分析:(1)先求得拋物線(xiàn)的解析式,再求得點(diǎn)B、C的坐標(biāo),再由待定系數(shù)法求出直線(xiàn)AB的解析式;(2)△ABD是等邊三角形,根據(jù)已知條件易證△BOA≌△DOA,可得BA=DA,根據(jù)銳角三角函數(shù)可求得∠ABO=60°,即可判定△ABD是等邊三角形;(3)過(guò)點(diǎn)E作EG∥x軸,交AB于點(diǎn)G, 易證△AEG是等邊三角形,可得AE=AG,再證△BEG≌△EFD,可得BE=EF,易得△BEF是等邊三角形 ,當(dāng)BE⊥AD時(shí),BE的長(zhǎng)度最小,則△BEF的面積取最小值,求得△BEF面積的最小值即可.
試題解析:
(1)將點(diǎn)A(0,- )代入拋物線(xiàn)解析式中,得c=-,
當(dāng)y=0時(shí),
化簡(jiǎn)得x2-2x-3=0
(x+1)(x-3)=0
x 1=-1, x 2=3
點(diǎn)B (-1,0),點(diǎn)C(3,0)
設(shè)直線(xiàn)AB的表達(dá)式為y=kx+b,
圖象經(jīng)過(guò)點(diǎn)A(0,- ),點(diǎn)B (-1,0),
代入得 ,解得
直線(xiàn)AB的表達(dá)式為
(2)△ABD是等邊三角形,
點(diǎn)B(-1,0), 點(diǎn)D(1,0)
OB=OD=1,
∵OA是公共邊,∠BOA=∠DOA=90°,
∴△BOA≌△DOA,
∴BA=DA,
tan∠ABO=,
∴∠ABO=60°,
△ABD是等邊三角形
(3)過(guò)點(diǎn)E作EG∥x軸,交AB于點(diǎn)G,
∵△ABD是等邊三角形
∴∠BAD=∠ABD=∠ADB=60°
∴∠AEG=∠AGE=60°
∴△AEG是等邊三角形,
∴AE=AG
∴DE=BG
∵AB∥l
∴∠
∴∠GBE+∠GEB=60°,∠DEF+∠GEB=60°,
∴∠GBE=∠DEF
∴△BEG≌△EFD
∴BE=EF
又∵∠BEF=60°
∴△BEF是等邊三角形
∴S△BEF=
當(dāng)BE⊥AD時(shí),BE的長(zhǎng)度最小,則△BEF的面積取最小值,
此時(shí),BE=ABsin60°=,
△BEF面積的最小值==
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a3+a2=2a5
B.(﹣ab2)3=a3b6
C.2a(1﹣a)=2a﹣2a2
D.(a+b)2=a2+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)根據(jù)圖示規(guī)律填表:
圖形編號(hào) | 1×1的正方形個(gè)數(shù) | 2×2的正方形個(gè)數(shù) | 3×3的正方形個(gè)數(shù) | 4×4的正方形個(gè)數(shù) |
① | ||||
② | ||||
③ | ||||
④ |
(2)猜想:第n個(gè)圖形共有多少個(gè)正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在植樹(shù)節(jié)到來(lái)之際,某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹(shù)苗共17棵,已知A種樹(shù)苗每棵80元,B種樹(shù)苗每棵60元.
(1)若購(gòu)進(jìn)A、B兩種樹(shù)苗剛好用去1220元,問(wèn)購(gòu)進(jìn)A、B兩種樹(shù)苗各多少棵?
(2)若購(gòu)買(mǎi)B種樹(shù)苗的數(shù)量少于A種樹(shù)苗的數(shù)量,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫(huà)三視圖時(shí),首先確定主視圖的位置.畫(huà)出主視圖,然后在主視圖的下面畫(huà)出俯視圖,在主視圖的右面畫(huà)出左視圖.主視圖反映物體的_______和_______,俯視圖反映物體的_______和_______,左視圖反映物體的_______和_______.因此,畫(huà)三視圖時(shí),主、俯視圖要長(zhǎng)對(duì)正,主、左視圖要高平齊,左、俯視圖要寬相等.看得見(jiàn)部分的輪廓線(xiàn)通常畫(huà)成實(shí)線(xiàn),看不見(jiàn)部分的輪廓線(xiàn)通常畫(huà)成虛線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王購(gòu)買(mǎi)了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.請(qǐng)根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:
(1)用含x、y的代數(shù)式表示地面總面積;
(2)若x=5,y= ,鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形具有而菱形不具有的性質(zhì)是( 。
A. 對(duì)角線(xiàn)相等 B. 兩組對(duì)邊分別平行
C. 對(duì)角線(xiàn)互相平分 D. 兩組對(duì)角分別相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC是邊長(zhǎng)為3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間t(s),解答下列各問(wèn)題:
(1)經(jīng)過(guò) 秒時(shí),求△PBQ的面積;
(2)當(dāng)t為何值時(shí),△PBQ是直角三角形?
(3)是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出t的值;不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知蝸牛從A點(diǎn)出發(fā),在一條數(shù)軸上來(lái)回爬行,規(guī)定:向正半軸運(yùn)動(dòng)記作“+”,向負(fù)半軸運(yùn)動(dòng)記作“﹣”,從開(kāi)始到結(jié)束爬行的各段路程(單位:cm)依次為:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4
(1)若A點(diǎn)在數(shù)軸上表示的數(shù)為﹣3,則蝸牛停在數(shù)軸上何處,請(qǐng)通過(guò)計(jì)算加以說(shuō)明;
(2)若蝸牛的爬行速度為每秒 ,請(qǐng)問(wèn)蝸牛一共爬行了多少秒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com