【題目】閱讀下列材料:

(材料)如圖,對(duì)任意符合條件的直角三角形BAC,繞其銳角頂點(diǎn)逆時(shí)針旋轉(zhuǎn)90°DAE,所以∠BAE=90°,且四邊形ACFD是一個(gè)正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于RtBAERtBFE的面積之和,根據(jù)圖形我們就能證明勾股定理: .

(請(qǐng)回答)如圖是任意符合條件的兩個(gè)全等的RtBEARtACD拼成的,你能根據(jù)圖示再寫(xiě)一種證明勾股定理的方法嗎?

【答案】詳見(jiàn)解析.

【解析】

根據(jù)ABCRtACD的面積之和=RtABDBCD的面積之和求解即可.

此圖也可以看成RtBEA繞其直角頂點(diǎn)順時(shí)針旋轉(zhuǎn)90°,再向下平移得到.一方面,四邊形ABCD的面積等于△ABCRtACD的面積之和,另一方面,四邊形ABCD的面積等于RtABD和△BCD的面積之和,

所以:

即:

整理:

所以:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC、AC邊上的高,AD、BE相交于點(diǎn)F,連接CF,則下列結(jié)論:①BF=AC; ②∠FCD=45°; ③若BF=2EC,則△FDC周長(zhǎng)等于AB的長(zhǎng);其中正確的有( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是( )

A.
B.4
C.
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)C(0,2),且與反比例函數(shù)y=﹣ 的圖象在第二象限內(nèi)交于點(diǎn)B,過(guò)點(diǎn)B作BD⊥x軸于點(diǎn)D,OD=2.
(1)求直線AB的解析式;
(2)若點(diǎn)P是線段BD上一點(diǎn),且△PBC的面積等于3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是大半圓O的直徑,AO是小半圓M的直徑,點(diǎn)P是大半圓O上一點(diǎn),PA與小半圓M交于點(diǎn)C,過(guò)點(diǎn)C作CD⊥OP于點(diǎn)D.
(1)求證:CD是小半圓M的切線;
(2)若AB=8,點(diǎn)P在大半圓O上運(yùn)動(dòng)(點(diǎn)P不與A,B兩點(diǎn)重合),設(shè)PD=x,CD2=y. ①求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
②當(dāng)y=3時(shí),求P,M兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行“社會(huì)主義核心價(jià)值觀”知識(shí)比賽活動(dòng),全體學(xué)生都參加比賽,學(xué)校對(duì)參賽學(xué)生均給與表彰,并設(shè)置一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng)共四個(gè)獎(jiǎng)項(xiàng),賽后將獲獎(jiǎng)情況繪制成如下所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給的信息,解答下列問(wèn)題:
(1)該校共有名學(xué)生;
(2)在圖①中,“三等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù)是;
(3)將圖②補(bǔ)充完整;
(4)從該校參加本次比賽活動(dòng)的學(xué)生中隨機(jī)抽查一名.求抽到獲得一等獎(jiǎng)的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一、閱讀理解

在△ABC中,BC=a,CA=b,AB=c;

(1)若∠C為直角,則a2+b2=c2;

(2)若∠C為銳角,則a2+b2c2的關(guān)系為:a2+b2>c2;

(3)若∠C為鈍角,試推導(dǎo)a2+b2c2的關(guān)系.

二、探究問(wèn)題:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是鈍角三角形,求第三邊c的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐徐州號(hào)高鐵A復(fù)興號(hào)高鐵B前往北京.已知A車(chē)的平均速度比B車(chē)的平均速度慢80km/h,A車(chē)的行駛時(shí)間比B車(chē)的行駛時(shí)間多40%,兩車(chē)的行駛時(shí)間分別為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案