【題目】在矩形ABCD中,點E為AD的中點,連接BE、AC,AC⊥BE于點F,連接DF,對于結(jié)論①CF=2AF②△AEF∽△CAB③DF=DC④tan∠CAD=正確的有_______________.
【答案】①②③
【解析】
只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可判斷②正誤;由AD∥BC,推出△AEF∽△CBF,推出AE和CF的關(guān)系即可判斷①正誤;只要證明DM垂直平分CF,即可證明③;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,求出a和b的關(guān)系,可得tan∠CAD的值即可判斷④的正誤,
解:如圖,過D作DM∥BE交AC于N,
∵四邊形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于點F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故②正確;
∵AD∥BC,
∴△AEF∽△CBF,
∴,
∵AE=AD=BC,
∴,
∴CF=2AF,故①正確;
∵DE∥BM,BE∥DM,
∴四邊形BMDE是平行四邊形,
∴BM=DE=BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于點F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故③正確;
設(shè)AE=a,AB=b,則AD=2a,
由△BAE∽△ADC,有,即,
∴tan∠CAD=.故④不正確;
∴正確的有①②③;
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】點P1(﹣1,y1),P2(2,y2),P3(5,y3)均在二次函數(shù)y=﹣x2+2x+c的圖象上,則y1,y2,y3的大小關(guān)系是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:經(jīng)過三角形一邊中點,且平分三角形周長的直線叫做這個三角形在該邊上的中分線,其中落在三角形內(nèi)部的部分叫做中分線段.
(1)如圖,△ABC中,AC>AB,DE是△ABC在BC邊上的中分線段,F為AC中點,過點B作DE的垂線交AC于點G,垂足為H,設(shè)AC=b,AB=c.
①求證:DF=EF;
②若b=6,c=4,求CG的長度;
(2)若題(1)中,S△BDH=S△EGH,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(2,-5),頂點坐標為(-1,4),直線l的解析式為y=2x+m.
(1)求拋物線的解析式;
(2)若拋物線與直線l有兩個公共點,求的取值范圍;
(3)若直線l與拋物線只有一個公共點P,求點P的坐標;
(4)設(shè)拋物線與軸的交點分別為A、B,求在(3)的條件下△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=,對角線AC,BD交于O點,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F.
(1)求證:當旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+8與x軸交于A點,與y軸交于點B,動點P從A點出發(fā),以每秒2個單位速度沿射線AO勻速運動,同時動點Q從B點出發(fā),以每秒1個單位的速度沿射線BA方向向點A勻速運動,當一個點停止運動,另一個點也隨之停止運動,連接PQ,設(shè)運動的時間為t(秒).
(1)用t的代數(shù)式表示AP= ,AQ=
(2)當t為何值時,PQ∥OB?
(3)若點C為平面直角坐標系內(nèi)一點,是否存在t值,使得以A、P、Q、C為頂點的四邊形為菱形?若存在,求出Q點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將圖一中的等腰直角三角形紙片ABC,依次沿著折痕DE,FG翻折,得到圖二中的五邊形ADEGF.若圖二中,DF∥EG,點C′,B′恰好都是線段DF的三等分點,GC′交EB′于點O,EG=4﹣2,則等腰直角三角形ABC的斜邊BC的長為( 。
A.4+6B.4﹣6C.8+4D.8﹣4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB⊥AD,AB⊥BC,以AB為直徑的⊙O與CD相切于點E,連接OC、OD.
(1)求證:OC⊥OD;
(2)如圖2,連接AC交OE于點M,若AB=4,BC=1,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某校體育場內(nèi)一看臺的截面圖,看臺CD與水平線的夾角為30°,最低處C與地面的距離BC為2.5米,在C,D正前方有垂直于地面的旗桿EF,在C,D兩處測得旗桿頂端F的仰角分別為60°和30°,CD長為10米,升旗儀式中,當國歌開始播放時,國旗也在離地面1.5米的P處同時冉冉升起,國歌播放結(jié)束時,國旗剛好上升到旗桿頂端F,已知國歌播放時間為46秒,求國旗上升的平均速度.(結(jié)果精確到0.01米/秒)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com