【題目】已知矩形ABCD中,對角線AC、BD相交于點O,AEBD,垂足為EAD=8,

(1)若∠DAE︰∠BAE=31,求∠EAC的度數(shù);

(2)ED=3BE,求AE的長.

【答案】145°;(24.

【解析】

1)由已知條件求出∠BAE22.5°,再根據(jù)矩形的性質(zhì)得到OAOB,求出∠OAB=ABE=67.5°,即可得出∠EAC的度數(shù);

2)根據(jù)矩形的性質(zhì)和等腰三角形三線合一的性質(zhì)得到△OAB是等邊三角形,求出∠ADE =30°,利用含30°角的直角三角形的性質(zhì)可求出AE.

(1)解:∵∠DAE︰∠BAE=31,

∴∠BAE=90°×=22.5°,

∴∠ABE=67.5°

∵四邊形ABCD是矩形,

AC=BDAO=CO,BO=DO

OA=OB,

∴∠OAB=ABE=67.5°

∴∠EAC=OABBAE=67.5°22.5°=45°;

(2)OA=OB=OD,ED=3BE,

OE+OD=3BE,

OBBE+OB=3BE,

OB =2BE,

∴點EOB的中點,

AEBD

AB=OA,

OA=AB=OB,即△OAB是等邊三角形,

∴∠ABD=60°,

∴∠ADE=90°ABD=30°

AEBD,AD=8,

AE=AD=4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1)()2(2)0+(0.2)2018×(5)2018;

(2)用整式乘法公式計算:10121;

(3)(x2y+2x2yy3)÷y(y+2x)(2xy);

(4)先化簡,再求值:(a2b)2+(ab)(a+b)2(a3b)(ab),其中,a1,b=﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AD=6,點EAD邊上,且AE=4,EFBECD于點F

1)求證:ABE∽△DEF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MNPQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關系是S1_____S2;(填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形的邊, , 上一點, , 邊上一動點,將梯形沿直線折疊, 的對應點為,當的長度最小時, 的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】年冬季越野賽在濱河學校操場舉行,某運動員從起點學校東門出發(fā),途徑濕地公園,沿比賽路線跑回終點學校東門.沿該運動員離開起點的路程(千米)與跑步時間(時間)之間的函數(shù)關系如圖所示,其中從起點到濕地公園的平均速度是千米/分鐘,用時分鐘,根據(jù)圖像提供的信息,解答下列問題:

)求圖中的值;

)組委會在距離起點千米處設立一個拍攝點,該運動員從第一次過點到第二次過點所用的時間為分鐘.

①求所在直線的函數(shù)解析式;

②該運動員跑完全程用時多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD邊長為3,連接ACAE平分CAD,交BC的延長線于點E,FAAE,交CB延長線于點F,則EF的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一種廣場三聯(lián)漫步機,其側(cè)面示意圖如圖2所示,其中ABAC=120cm,BC=80cm,AD=30cm,∠DAC90°.求點D到地面的高度是多少?

查看答案和解析>>

同步練習冊答案