【題目】如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標分別為(-1,-1)、(2,-1),點B的橫坐標的最大值為3,則點A的橫坐標的最小值為( )
A.-3B.-2.5C.-2D.-1.5
科目:初中數(shù)學 來源: 題型:
【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.
(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點A,B,與函數(shù)y=x的圖象交于點M,點M的橫坐標為2.在x軸上有一點P (a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)和y=x的圖象于點C,D.
(1)求點A的坐標;
(2)若OB=CD,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程(請選擇合適的方法)
(1)x2+4x=0;
(2)x2+x﹣=0
(3)3x(x﹣1)=4(x﹣1);
(4)x2﹣4x+4=(3﹣2x)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ACB=90°,AC=BC,D是BC上一點,連接AD,將線段AD繞著點A逆時針旋轉(zhuǎn),使點D的對應(yīng)點E在BC的延長線上。過點E作EF⊥AD垂足為點G,
(1)求證:FE=AE;
(2)填空:=__________
(3)若,求的值(用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果商計劃購進甲、乙兩種水果進行銷售,經(jīng)了解,甲種水果的進價比乙種水果的進價每千克少4元,且用800元購進甲種水果的數(shù)量與用1000元購進乙種水果的數(shù)量相同.
(1)求甲、乙兩種水果的單價分別是多少元?
(2)該水果商根據(jù)該水果店平常的銷售情況確定,購進兩種水果共200千克,其中甲種水果的數(shù)量不超過乙種水果數(shù)量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價定為每千克20元,乙種水果的銷售價定為每千克25元,則水果商應(yīng)如何進貨,才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合,DF=8.
(1)若P是BC上的一個動點,當PA=DF時,求此時∠PAB的度數(shù);
(2)將圖①中的等腰直角三角板ABC繞點B順時針旋轉(zhuǎn)30°,點C落在BF上,AC與BD交于點O,連接CD,如圖②.
①探求△CDO的形狀,并說明理由;
②在圖①中,若P是BC的中點,連接FP,將等腰直角三角板ABC繞點B順時針旋轉(zhuǎn),當旋轉(zhuǎn)角α= 時,FP長度最大,最大值為 (直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數(shù)學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DE交AF于點M,觀察發(fā)現(xiàn):點M是DE的中點.
下面是兩位學生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求的值;
(3)在(2)的條件下,若=k(k為大于的常數(shù)),直接用含k的代數(shù)式表示的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com