【題目】如圖,已知AB=AC,∠A=40°,AB=10,DC=3,AB的垂直平分線MN交AC于點D,則∠DBC=度,BD=

【答案】30;7
【解析】解:∵AB=AC,∠A=40°, ∴∠ABC=∠C=70°,
∵MN是AB的垂直平分線,
∴DA=DB,
∴∠DBA=∠A=40°,
∴∠DBC=30°;
∵AB=AC,AB=10,DC=3,
∴BD=DA=10﹣3=7.
所以答案是:30,7.
【考點精析】利用線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)對題目進行判斷即可得到答案,需要熟知垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)2,3,2,4,25,3的中位數(shù)是__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某網(wǎng)店的“翻牌抽獎”活動,如圖,共有4張牌,分別對應(yīng)5元,10元,15元,20元的現(xiàn)金優(yōu)惠券,小明只能看到牌的背面.

(1)如果隨機翻一張牌,那么抽中20元現(xiàn)金優(yōu)惠券的概率是  

(2)如果隨機翻兩張牌,且第一次翻的牌不參與下次翻牌,則所獲現(xiàn)金優(yōu)惠券的總值不低于30元的概率是多少?請畫樹狀圖或列表格說明問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)軸上有A、B、C三個點,A、B、C對應(yīng)的數(shù)分別是a、b、c,且滿足+(c1020,動點PA出發(fā),以每秒1個單位的速度向終點C運動,設(shè)運動時間為t

1a、b、c的值;

2若點PA點的距離是點PB點的距離的2求點P對應(yīng)的數(shù);

3當(dāng)點P運動到B點時,Q從點A出發(fā),以每秒3個單位的速度向C點運動,Q點到達(dá)C點后再立即以同樣的速度返回,運動到終點A在點Q開始運動后第幾秒時,P、Q兩點之間的距離為4?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標(biāo)分別為(﹣1,0)、(0,﹣3).

(1)求拋物線的函數(shù)解析式;

(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標(biāo);

(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.
(1)猜想圖1中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系,不必證明;
(2)將圖1中的正方形CEFG繞著點C按順時針方向旋轉(zhuǎn)任意角度α,得到如圖2情形.請你通過觀察、測量等方法判斷(1)中得到的結(jié)論是否仍然成立,并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x23x0解為(  )

A.x0B.x3C.x0x3D.x0x3

查看答案和解析>>

同步練習(xí)冊答案