如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.
解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),
∴O為AB的中點(diǎn),即OA=OB=4,
∴P(4,2),B(4,0),
將A(﹣4,0)與P(4,2)代入y=kx+b得:,
解得:k=,b=1,
∴一次函數(shù)解析式為y=x+1,
將P(4,2)代入反比例解析式得:m=8,即反比例解析式為y=;
(2)假設(shè)存在這樣的D點(diǎn),使四邊形BCPD為菱形,如圖所示,
對(duì)于一次函數(shù)y=x+1,令x=0,得到y(tǒng)=1,即C(0,1),
∴直線BC的斜率為=﹣,
設(shè)過(guò)點(diǎn)P,且與BC平行的直線解析式為y﹣2=﹣(x﹣4),即y=,
與反比例解析式聯(lián)立得:,
消去y得:=,
整理得:x2﹣12x+32=0,即(x﹣4)(x﹣8)=0,
解得:x=4(舍去)或x=8,
當(dāng)x=8時(shí),y=1,
∴D(8,1),
此時(shí)PD==,BC==,即PD=BC,
∵PD∥BC,
∴四邊形BCPD為平行四邊形,
∵PC==,即PC=BC,
∴四邊形BCPD為菱形,滿足題意,
則反比例函數(shù)圖象上存在點(diǎn)D,使四邊形BCPD為菱形,此時(shí)D坐標(biāo)為(8,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于x的反比例函數(shù)y=的圖象如圖,A、P為該圖象上的點(diǎn),且關(guān)于原點(diǎn)成中心對(duì)稱.△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點(diǎn)B.若△PAB的面積大于12,則關(guān)于x的方程(a﹣1)x2﹣x+=0的根的情況是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等實(shí)數(shù)根,則k的取值范圍是( )
| A. | k> | B. | k≥ | C. | k>且k≠1 | D. | k≥且k≠1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.
問(wèn)題引入:
(1)如圖①,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時(shí),S△ABD:S△ABC= ;當(dāng)點(diǎn)D是BC邊上任意一點(diǎn)時(shí),S△ABD:S△ABC= (用圖中已有線段表示).
探索研究:
(2)如圖②,在△ABC中,O點(diǎn)是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO、CO,試猜想S△BOC與S△ABC之比應(yīng)該等于圖中哪兩條線段之比,并說(shuō)明理由.
拓展應(yīng)用:
(3)如圖③,O是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO并延長(zhǎng)交AC于點(diǎn)F,連結(jié)CO并延長(zhǎng)交AB于點(diǎn)E,試猜想++的值,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知三角形的三邊長(zhǎng)分別為4、a、8,那么a的取值范圍是 ( )
A.4<a<8 B.1<a<12 C. 4<a<12 D.4<a<6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com