(2008•連云港)如圖,在直角梯形ABCD中,AB∥CD,∠A=90°,CD>AD,將紙片沿過點D的直線折疊,使點A落在邊CD上的點E處,折痕為DF.
(1)求證:四邊形ADEF是正方形;
(2)取線段AF的中點G,連接EG,若BG=CD,試說明四邊形GBCE是等腰梯形.

【答案】分析:由題意知,AD=DE,易證四邊形AFED是矩形,∴四邊形AFED是正方形,連接DG由于BG與CD平行且相等,所以邊形BCDG是平行四邊形∴CB=DG,在正方形AFED中,易證△DAG≌△EFG,∴DG=EG=BC,即四邊形GBCE是等腰梯形.
解答:證明:(1))∵△DEF由△DAF折疊而得,
∴∠DEF=∠A=90°,DA=DE,
∵AB∥CD,
∴∠ADE=180°-∠A=90°.
∴∠DEF=∠A=∠ADE=90°.
∴四邊形ADEF是矩形.(4分)
又∵DA=DE,
∴四邊形ADEF是正方形.(5分)

(2)由折疊及圖形特點易得EG與CB不平行,
連接DG,
∵BG∥CD,且BG=CD,
∴四邊形BCDG是平行四邊形.
∴CB=DG.
∵四邊形ADEF是正方形,
∴EF=DA,∠EFG=∠A=90°.
∵G是AF的中點,
∴AG=FG.
在△DAG和△EFG中,
∴△DAG≌△EFG(SAS).(10分)
∴DG=EG.(11分)
∴EG=BC.
∴四邊形GBCE是等腰梯形.(12分)
點評:本題利用了直角梯形的性質(zhì),矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),及等腰三角形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年3月江蘇省連云港市崗埠中學(xué)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•連云港)已知某反比例函數(shù)的圖象經(jīng)過點(m,n),則它一定也經(jīng)過點( )
A.(m,-n)
B.(n,m)
C.(-m,n)
D.(|m|,|n|)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•連云港)如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當(dāng)紙板Ⅰ移動至△PEF處時,設(shè)PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;
(2)當(dāng)點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市鎮(zhèn)海應(yīng)行久外語實驗學(xué)校中考模擬試卷(余滿龍)(解析版) 題型:解答題

(2008•連云港)如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當(dāng)紙板Ⅰ移動至△PEF處時,設(shè)PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;
(2)當(dāng)點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•連云港)如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當(dāng)紙板Ⅰ移動至△PEF處時,設(shè)PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;
(2)當(dāng)點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•連云港)已知某反比例函數(shù)的圖象經(jīng)過點(m,n),則它一定也經(jīng)過點( )
A.(m,-n)
B.(n,m)
C.(-m,n)
D.(|m|,|n|)

查看答案和解析>>

同步練習(xí)冊答案