(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為 。
(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.
(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開(kāi)紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小。
(1)125°;(2)同意;(3)60°
解析試題分析:(1)先根據(jù)矩形的性質(zhì)結(jié)合三角形的內(nèi)角和定理求得∠AEB的度數(shù),再根據(jù)折疊的性質(zhì)求得∠DEF的度數(shù),然后根據(jù)平行線的性質(zhì)求得∠EFC的度數(shù),即可得到結(jié)果;
(2) 設(shè)AD與EF交于點(diǎn)G.由折疊的性質(zhì)可得AD平分∠BAC,所以∠BAD=∠CAD.∠AGE=∠DGE=90°,即得∠AEF=∠AFE,從而可以證得結(jié)論;
(3)過(guò)N作NH⊥AD于H,設(shè),根據(jù)折疊的性質(zhì)及勾股定理可證得△MPF為等邊三角形,則∠MFE=30°,∠MFN=60°,又MN=MF=,則△MNF為等邊三角形,即可求得結(jié)果;
(1)因?yàn)椤螦BE=20°,所以∠AEB=70°
由折疊知,∠DEF=55°
所以=∠EFC=125°;
(2)同意.
設(shè)AD與EF交于點(diǎn)G.
由折疊知,AD平分∠BAC,所以∠BAD=∠CAD.
由折疊知,∠AGE=∠DGE=90°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF為等腰三角形.
(3)過(guò)N作NH⊥AD于H
設(shè)
由折疊知, ①
②
∴△MPF為等邊三角形
∴∠MFE=30°
∴∠MFN=60°,
又∵M(jìn)N=MF=
∴△MNF為等邊三角形
∴∠MNF=60°.
考點(diǎn):折疊問(wèn)題的綜合題
點(diǎn)評(píng):此類(lèi)問(wèn)題綜合性強(qiáng),難度較大,在中考中比較常見(jiàn),一般作為壓軸題,題目比較典型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
4 | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com