(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為        。

(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.

(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開(kāi)紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小。

(1)125°;(2)同意;(3)60°

解析試題分析:(1)先根據(jù)矩形的性質(zhì)結(jié)合三角形的內(nèi)角和定理求得∠AEB的度數(shù),再根據(jù)折疊的性質(zhì)求得∠DEF的度數(shù),然后根據(jù)平行線的性質(zhì)求得∠EFC的度數(shù),即可得到結(jié)果;
(2) 設(shè)AD與EF交于點(diǎn)G.由折疊的性質(zhì)可得AD平分∠BAC,所以∠BAD=∠CAD.∠AGE=∠DGE=90°,即得∠AEF=∠AFE,從而可以證得結(jié)論;
(3)過(guò)N作NH⊥AD于H,設(shè),根據(jù)折疊的性質(zhì)及勾股定理可證得△MPF為等邊三角形,則∠MFE=30°,∠MFN=60°,又MN=MF=,則△MNF為等邊三角形,即可求得結(jié)果;
(1)因?yàn)椤螦BE=20°,所以∠AEB=70°
由折疊知,∠DEF=55°
所以=∠EFC=125°;
(2)同意.  
設(shè)AD與EF交于點(diǎn)G.

由折疊知,AD平分∠BAC,所以∠BAD=∠CAD.
由折疊知,∠AGE=∠DGE=90°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF為等腰三角形.
(3)過(guò)N作NH⊥AD于H

設(shè)
由折疊知, ① 

② 
 
∴△MPF為等邊三角形
∴∠MFE=30°
∴∠MFN=60°,
又∵M(jìn)N=MF=  
∴△MNF為等邊三角形
∴∠MNF=60°.
考點(diǎn):折疊問(wèn)題的綜合題
點(diǎn)評(píng):此類(lèi)問(wèn)題綜合性強(qiáng),難度較大,在中考中比較常見(jiàn),一般作為壓軸題,題目比較典型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、動(dòng)手操作:
如圖①是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中的虛線剪開(kāi)分成四個(gè)大小相等的長(zhǎng)方形,然后按照?qǐng)D②所示拼成一個(gè)正方形.
提出問(wèn)題:
(1)觀察圖②,請(qǐng)用兩種不同的方法表示陰影部分的面積;
(2)請(qǐng)寫(xiě)出三個(gè)代數(shù)式(a+b)2,(a-b)2,ab之間的一個(gè)等量關(guān)系.
問(wèn)題解決:
根據(jù)上述(2)中得到的等量關(guān)系,解決下列問(wèn)題:
已知:x+y=6,xy=3.求:(x-y)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)手操作
在如圖所示的方格紙中,△ABC的頂點(diǎn)都在小正方形的頂點(diǎn)上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.
(1)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,其中A,B,C分別和A1,B1,C1對(duì)應(yīng);
(2)平移△ABC,使得A點(diǎn)在x軸上,B點(diǎn)在y軸上,平移后的三角形記為△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分別和A2,B2,C2對(duì)應(yīng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)手操作:如圖,在10×10的正方形網(wǎng)格中,有一矩形ABCD.
(1)將矩形ABCD向下平移5個(gè)單位得到矩形A1B1C1D1,再繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°,得到矩形A2B2C2D2,請(qǐng)你畫(huà)出矩形A1B1C1D1和A2B2C2D2;
(2)直線B1C1上存在格點(diǎn)P使∠A1PA2=90°.這樣的格點(diǎn)P有
1
1
個(gè).(請(qǐng)直接寫(xiě)出答案)
(3)請(qǐng)建立一個(gè)恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,點(diǎn)O為坐標(biāo)原點(diǎn),使得點(diǎn)A在第二象限,且滿足直線AO與x軸的負(fù)半軸的夾角余弦值為
45

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)手操作:如圖,在10×10的正方形單位網(wǎng)格中,有一矩形ABCD.
(1)將矩形ABCD向下平移4個(gè)單位得到矩形A1B1C1D1,再繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°,得到矩形A2B2C2D2,請(qǐng)你畫(huà)出矩形A1B1C1D1和矩形A2B2C2D2;
(2)直線B1C1上存在格點(diǎn)P,使∠A1PA2=90°,這樣的格點(diǎn)P有
1
1
個(gè);(請(qǐng)直接寫(xiě)出答案)
(3)求點(diǎn)A在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)手操作:如圖,在矩形紙片ABCD中,AB=3,AD=5.如圖所示折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ,當(dāng)點(diǎn)A′在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng).若限定點(diǎn)P、Q分別在AB、AD邊上移動(dòng).
求:(1)當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),A′C的長(zhǎng)是多少?
(2)點(diǎn)A′在BC邊上可移動(dòng)的最大距離是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案