【題目】如圖,在△ABC中,ABAC,點Ay軸上,點Cx軸上,BCx軸,tanACO.延長AC到點D,過點DDEx軸于點G,且DGGE,連接CE,反比例函數(shù)yk0)的圖象經過點B,和CE交于點F,且CFFE21.若△ABE面積為6,則點D的坐標為_____

【答案】,﹣3).

【解析】

根據(jù)AB=AC,tanACO=,設未知數(shù)表示點A、BC的坐標,根據(jù)線段中垂線的性質得CE=CD,進而得到∠ECG=DCG=ACO,再根據(jù)tanECG=tanACO=,再設未知數(shù)表示出點E的坐標,進而求出CE的中點F的坐標,把點B、F的坐標代入反比例函數(shù)的關系式,進而得出兩個未知數(shù)之間的關系,再根據(jù)=6,列方程求出未知數(shù),進而確定點的坐標.

解:過點AAMBC,垂足為M,

AB=AC,

BM=CM,

tanACO==

∴設OA=2m,OC=3m,則BC=4m,因此點C(3m0)、B(3m4m),

DEx軸于點G,且DG=GE

CE=CD,

∴∠ECG=∠DCG=∠ACO,

tanECG==tanACO=,

EG=2n,則CG=3n,因此點E(3m+3n,2n),

又∵CFFE=21.即點FCE的三等分點,

∴點F(3m+2n,n),

B(3m,4m)和F(3m+2nn)代入反比例函數(shù)y=得,

k=3m4m=(3m+2n)n,即(3m2n)(3m+n)=0,

m0,n0

n=m,

∴點E的坐標為(m3m),

SABE=6=S梯形ABCO+S梯形BCGES梯形AOGE,

(2m+4m3m+(4m+3mm(2m+3mm=6,

解得:m=1

E(,3),

D(,﹣3)

故答案為:(,﹣3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結構圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點.已知的弓形高,,.當鎖柄繞著點順時針旋轉至位置時,門鎖打開,此時直線所在的圓相切,且,

1)求所在圓的半徑;

2)求線段的長度.(,結果精確到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)求該二次函數(shù)圖象的頂點和對稱軸;

2)在所給坐標系中畫出該二次函數(shù)的圖象;

3)根據(jù)圖象直接寫出方程x24x+30的根;

4)根據(jù)圖象寫出當y0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°BE平分∠ABCAC于點D,交△ABC的外接圓于點E,過點EEFBCBC的延長線于點F.請補全圖形后完成下面的問題:

1)求證:EF是△ABC外接圓的切線;

2)若BC=5,sinABC=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,分別是、的中點,,延長到點,使得,連接

1)求證:四邊形BCEF是菱形;

2)若,求菱形BCEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線x軸交于點A,與y軸交點C,拋物線AC兩點,與x軸交于另一點B

1)求拋物線的解析式.

2)在直線AC上方的拋物線上有一動點E,連接BE,與直線AC相交于點F,當時,求的值.

3)點N是拋物線對稱軸上一點,在(2)的條件下,若點E位于對稱軸左側,在拋物線上是否存在一點M,使以M,NEB為頂點的四邊形是平行四邊形?若存在,直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】宣和中學圖書館今日購進甲、乙兩種圖書,每本甲種圖書的進價比每本乙種圖書的進價高20元,花780元購進甲種圖書的數(shù)量與花540元購進乙種圖書的數(shù)量相同.

1)求甲、乙兩種圖書每本的進價分別是多少元;

2)宣和中學購進甲、乙兩種圖書共70本,總購書費用不超過3950元,則最多購進甲種圖書多少本.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織學生開展為貧困山區(qū)孩子捐書活動,要求捐贈的書籍類別為科普類、文學類、漫畫類、哲學故事類、環(huán)保類,學校圖書管理員對所捐贈的書籍隨機抽查了部分進行統(tǒng)計,并對獲取的數(shù)據(jù)進行了整理,根據(jù)整理結果,繪制了如圖所示的兩幅不完整的統(tǒng)計圖.已知所統(tǒng)計的數(shù)據(jù)中,捐贈的哲學故事類書籍和文學類書籍的數(shù)量相同.請根據(jù)以上信息,解答下列問題:

1)本次被抽查的書籍有_____冊.

2)補全條形統(tǒng)計圖.

3)若此次捐贈的書籍共1200冊,請你估計所捐贈的科普類書籍有多少冊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元,每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

2)經調査,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤且盡快減少庫存,每件應降價多少元?

3)在(2)的條件下,每件商品的售價為多少元時,每天可獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案